Solve for x
x=\frac{25y^{2}}{36}-\frac{25y}{9}-\frac{173}{9}
Solve for y (complex solution)
y=-\frac{6\sqrt{x+22}}{5}+2
y=\frac{6\sqrt{x+22}}{5}+2
Solve for y
y=-\frac{6\sqrt{x+22}}{5}+2
y=\frac{6\sqrt{x+22}}{5}+2\text{, }x\geq -22
Graph
Quiz
Algebra
5 problems similar to:
\frac{ { \left(y-2 \right) }^{ 2 } }{ 36 } - \frac{ (x-3) }{ 25 } = 1
Share
Copied to clipboard
25\left(y-2\right)^{2}-36\left(x-3\right)=900
Multiply both sides of the equation by 900, the least common multiple of 36,25.
25\left(y^{2}-4y+4\right)-36\left(x-3\right)=900
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-2\right)^{2}.
25y^{2}-100y+100-36\left(x-3\right)=900
Use the distributive property to multiply 25 by y^{2}-4y+4.
25y^{2}-100y+100-36x+108=900
Use the distributive property to multiply -36 by x-3.
25y^{2}-100y+208-36x=900
Add 100 and 108 to get 208.
-100y+208-36x=900-25y^{2}
Subtract 25y^{2} from both sides.
208-36x=900-25y^{2}+100y
Add 100y to both sides.
-36x=900-25y^{2}+100y-208
Subtract 208 from both sides.
-36x=692-25y^{2}+100y
Subtract 208 from 900 to get 692.
-36x=692+100y-25y^{2}
The equation is in standard form.
\frac{-36x}{-36}=\frac{692+100y-25y^{2}}{-36}
Divide both sides by -36.
x=\frac{692+100y-25y^{2}}{-36}
Dividing by -36 undoes the multiplication by -36.
x=\frac{25y^{2}}{36}-\frac{25y}{9}-\frac{173}{9}
Divide 692-25y^{2}+100y by -36.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}