Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(\left(x-3\right)^{2}-4\right)\left(x^{2}-x-6\right)}{\left(\left(x+2\right)^{2}-7x-14\right)\left(\left(x+1\right)^{2}+x+1-6\right)}
Divide \frac{\left(x-3\right)^{2}-4}{\left(x+2\right)^{2}-7x-14} by \frac{\left(x+1\right)^{2}+x+1-6}{x^{2}-x-6} by multiplying \frac{\left(x-3\right)^{2}-4}{\left(x+2\right)^{2}-7x-14} by the reciprocal of \frac{\left(x+1\right)^{2}+x+1-6}{x^{2}-x-6}.
\frac{\left(\left(x-3\right)^{2}-4\right)\left(x^{2}-x-6\right)}{\left(\left(x+2\right)^{2}-7x-14\right)\left(\left(x+1\right)^{2}+x-5\right)}
Subtract 6 from 1 to get -5.
\frac{\left(x-5\right)\left(x-3\right)\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+4\right)}
Factor the expressions that are not already factored.
\frac{x-3}{x+4}
Cancel out \left(x-5\right)\left(x-1\right)\left(x+2\right) in both numerator and denominator.
\frac{\left(\left(x-3\right)^{2}-4\right)\left(x^{2}-x-6\right)}{\left(\left(x+2\right)^{2}-7x-14\right)\left(\left(x+1\right)^{2}+x+1-6\right)}
Divide \frac{\left(x-3\right)^{2}-4}{\left(x+2\right)^{2}-7x-14} by \frac{\left(x+1\right)^{2}+x+1-6}{x^{2}-x-6} by multiplying \frac{\left(x-3\right)^{2}-4}{\left(x+2\right)^{2}-7x-14} by the reciprocal of \frac{\left(x+1\right)^{2}+x+1-6}{x^{2}-x-6}.
\frac{\left(\left(x-3\right)^{2}-4\right)\left(x^{2}-x-6\right)}{\left(\left(x+2\right)^{2}-7x-14\right)\left(\left(x+1\right)^{2}+x-5\right)}
Subtract 6 from 1 to get -5.
\frac{\left(x-5\right)\left(x-3\right)\left(x-1\right)\left(x+2\right)}{\left(x-5\right)\left(x-1\right)\left(x+2\right)\left(x+4\right)}
Factor the expressions that are not already factored.
\frac{x-3}{x+4}
Cancel out \left(x-5\right)\left(x-1\right)\left(x+2\right) in both numerator and denominator.