\frac{ { \left(x+1 \right) }^{ 3 } - { \left(x-2 \right) }^{ 3 } }{ 9 } = \frac{ { \left(2 { x }^{ } -5 \right) }^{ 2 } +11 }{ 4 }
Solve for x
x=2
Graph
Share
Copied to clipboard
4\left(\left(x+1\right)^{3}-\left(x-2\right)^{3}\right)=9\left(\left(2x^{1}-5\right)^{2}+11\right)
Multiply both sides of the equation by 36, the least common multiple of 9,4.
4\left(x^{3}+3x^{2}+3x+1-\left(x-2\right)^{3}\right)=9\left(\left(2x^{1}-5\right)^{2}+11\right)
Use binomial theorem \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} to expand \left(x+1\right)^{3}.
4\left(x^{3}+3x^{2}+3x+1-\left(x^{3}-6x^{2}+12x-8\right)\right)=9\left(\left(2x^{1}-5\right)^{2}+11\right)
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(x-2\right)^{3}.
4\left(x^{3}+3x^{2}+3x+1-x^{3}+6x^{2}-12x+8\right)=9\left(\left(2x^{1}-5\right)^{2}+11\right)
To find the opposite of x^{3}-6x^{2}+12x-8, find the opposite of each term.
4\left(3x^{2}+3x+1+6x^{2}-12x+8\right)=9\left(\left(2x^{1}-5\right)^{2}+11\right)
Combine x^{3} and -x^{3} to get 0.
4\left(9x^{2}+3x+1-12x+8\right)=9\left(\left(2x^{1}-5\right)^{2}+11\right)
Combine 3x^{2} and 6x^{2} to get 9x^{2}.
4\left(9x^{2}-9x+1+8\right)=9\left(\left(2x^{1}-5\right)^{2}+11\right)
Combine 3x and -12x to get -9x.
4\left(9x^{2}-9x+9\right)=9\left(\left(2x^{1}-5\right)^{2}+11\right)
Add 1 and 8 to get 9.
36x^{2}-36x+36=9\left(\left(2x^{1}-5\right)^{2}+11\right)
Use the distributive property to multiply 4 by 9x^{2}-9x+9.
36x^{2}-36x+36=9\left(\left(2x-5\right)^{2}+11\right)
Calculate x to the power of 1 and get x.
36x^{2}-36x+36=9\left(4x^{2}-20x+25+11\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-5\right)^{2}.
36x^{2}-36x+36=9\left(4x^{2}-20x+36\right)
Add 25 and 11 to get 36.
36x^{2}-36x+36=36x^{2}-180x+324
Use the distributive property to multiply 9 by 4x^{2}-20x+36.
36x^{2}-36x+36-36x^{2}=-180x+324
Subtract 36x^{2} from both sides.
-36x+36=-180x+324
Combine 36x^{2} and -36x^{2} to get 0.
-36x+36+180x=324
Add 180x to both sides.
144x+36=324
Combine -36x and 180x to get 144x.
144x=324-36
Subtract 36 from both sides.
144x=288
Subtract 36 from 324 to get 288.
x=\frac{288}{144}
Divide both sides by 144.
x=2
Divide 288 by 144 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}