Solve for x
x=\frac{\sqrt{1021755}}{1110}\approx 0.910647725
x=-\frac{\sqrt{1021755}}{1110}\approx -0.910647725
Graph
Share
Copied to clipboard
\frac{\left(x\sqrt{24}\right)^{2}}{7\times 2}=\frac{789}{555}
Multiply 12 and 2 to get 24.
\frac{\left(x\times 2\sqrt{6}\right)^{2}}{7\times 2}=\frac{789}{555}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\frac{x^{2}\times 2^{2}\left(\sqrt{6}\right)^{2}}{7\times 2}=\frac{789}{555}
Expand \left(x\times 2\sqrt{6}\right)^{2}.
\frac{x^{2}\times 4\left(\sqrt{6}\right)^{2}}{7\times 2}=\frac{789}{555}
Calculate 2 to the power of 2 and get 4.
\frac{x^{2}\times 4\times 6}{7\times 2}=\frac{789}{555}
The square of \sqrt{6} is 6.
\frac{x^{2}\times 24}{7\times 2}=\frac{789}{555}
Multiply 4 and 6 to get 24.
\frac{x^{2}\times 24}{14}=\frac{789}{555}
Multiply 7 and 2 to get 14.
x^{2}\times \frac{12}{7}=\frac{789}{555}
Divide x^{2}\times 24 by 14 to get x^{2}\times \frac{12}{7}.
x^{2}\times \frac{12}{7}=\frac{263}{185}
Reduce the fraction \frac{789}{555} to lowest terms by extracting and canceling out 3.
x^{2}=\frac{263}{185}\times \frac{7}{12}
Multiply both sides by \frac{7}{12}, the reciprocal of \frac{12}{7}.
x^{2}=\frac{1841}{2220}
Multiply \frac{263}{185} and \frac{7}{12} to get \frac{1841}{2220}.
x=\frac{\sqrt{1021755}}{1110} x=-\frac{\sqrt{1021755}}{1110}
Take the square root of both sides of the equation.
\frac{\left(x\sqrt{24}\right)^{2}}{7\times 2}=\frac{789}{555}
Multiply 12 and 2 to get 24.
\frac{\left(x\times 2\sqrt{6}\right)^{2}}{7\times 2}=\frac{789}{555}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\frac{x^{2}\times 2^{2}\left(\sqrt{6}\right)^{2}}{7\times 2}=\frac{789}{555}
Expand \left(x\times 2\sqrt{6}\right)^{2}.
\frac{x^{2}\times 4\left(\sqrt{6}\right)^{2}}{7\times 2}=\frac{789}{555}
Calculate 2 to the power of 2 and get 4.
\frac{x^{2}\times 4\times 6}{7\times 2}=\frac{789}{555}
The square of \sqrt{6} is 6.
\frac{x^{2}\times 24}{7\times 2}=\frac{789}{555}
Multiply 4 and 6 to get 24.
\frac{x^{2}\times 24}{14}=\frac{789}{555}
Multiply 7 and 2 to get 14.
x^{2}\times \frac{12}{7}=\frac{789}{555}
Divide x^{2}\times 24 by 14 to get x^{2}\times \frac{12}{7}.
x^{2}\times \frac{12}{7}=\frac{263}{185}
Reduce the fraction \frac{789}{555} to lowest terms by extracting and canceling out 3.
x^{2}\times \frac{12}{7}-\frac{263}{185}=0
Subtract \frac{263}{185} from both sides.
\frac{12}{7}x^{2}-\frac{263}{185}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times \frac{12}{7}\left(-\frac{263}{185}\right)}}{2\times \frac{12}{7}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{12}{7} for a, 0 for b, and -\frac{263}{185} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{12}{7}\left(-\frac{263}{185}\right)}}{2\times \frac{12}{7}}
Square 0.
x=\frac{0±\sqrt{-\frac{48}{7}\left(-\frac{263}{185}\right)}}{2\times \frac{12}{7}}
Multiply -4 times \frac{12}{7}.
x=\frac{0±\sqrt{\frac{12624}{1295}}}{2\times \frac{12}{7}}
Multiply -\frac{48}{7} times -\frac{263}{185} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{0±\frac{4\sqrt{1021755}}{1295}}{2\times \frac{12}{7}}
Take the square root of \frac{12624}{1295}.
x=\frac{0±\frac{4\sqrt{1021755}}{1295}}{\frac{24}{7}}
Multiply 2 times \frac{12}{7}.
x=\frac{\sqrt{1021755}}{1110}
Now solve the equation x=\frac{0±\frac{4\sqrt{1021755}}{1295}}{\frac{24}{7}} when ± is plus.
x=-\frac{\sqrt{1021755}}{1110}
Now solve the equation x=\frac{0±\frac{4\sqrt{1021755}}{1295}}{\frac{24}{7}} when ± is minus.
x=\frac{\sqrt{1021755}}{1110} x=-\frac{\sqrt{1021755}}{1110}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}