Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{4^{-1}x^{-1}\left(y^{2}\right)^{-1}}{\left(3xy^{3}\right)^{-2}}
Expand \left(4xy^{2}\right)^{-1}.
\frac{4^{-1}x^{-1}y^{-2}}{\left(3xy^{3}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -1 to get -2.
\frac{\frac{1}{4}x^{-1}y^{-2}}{\left(3xy^{3}\right)^{-2}}
Calculate 4 to the power of -1 and get \frac{1}{4}.
\frac{\frac{1}{4}x^{-1}y^{-2}}{3^{-2}x^{-2}\left(y^{3}\right)^{-2}}
Expand \left(3xy^{3}\right)^{-2}.
\frac{\frac{1}{4}x^{-1}y^{-2}}{3^{-2}x^{-2}y^{-6}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{\frac{1}{4}x^{-1}y^{-2}}{\frac{1}{9}x^{-2}y^{-6}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{\frac{1}{4}x^{1}y^{4}}{\frac{1}{9}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\frac{1}{4}xy^{4}}{\frac{1}{9}}
Calculate x to the power of 1 and get x.
\frac{1}{4}xy^{4}\times 9
Divide \frac{1}{4}xy^{4} by \frac{1}{9} by multiplying \frac{1}{4}xy^{4} by the reciprocal of \frac{1}{9}.
\frac{9}{4}xy^{4}
Multiply \frac{1}{4} and 9 to get \frac{9}{4}.
\frac{4^{-1}x^{-1}\left(y^{2}\right)^{-1}}{\left(3xy^{3}\right)^{-2}}
Expand \left(4xy^{2}\right)^{-1}.
\frac{4^{-1}x^{-1}y^{-2}}{\left(3xy^{3}\right)^{-2}}
To raise a power to another power, multiply the exponents. Multiply 2 and -1 to get -2.
\frac{\frac{1}{4}x^{-1}y^{-2}}{\left(3xy^{3}\right)^{-2}}
Calculate 4 to the power of -1 and get \frac{1}{4}.
\frac{\frac{1}{4}x^{-1}y^{-2}}{3^{-2}x^{-2}\left(y^{3}\right)^{-2}}
Expand \left(3xy^{3}\right)^{-2}.
\frac{\frac{1}{4}x^{-1}y^{-2}}{3^{-2}x^{-2}y^{-6}}
To raise a power to another power, multiply the exponents. Multiply 3 and -2 to get -6.
\frac{\frac{1}{4}x^{-1}y^{-2}}{\frac{1}{9}x^{-2}y^{-6}}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{\frac{1}{4}x^{1}y^{4}}{\frac{1}{9}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\frac{1}{4}xy^{4}}{\frac{1}{9}}
Calculate x to the power of 1 and get x.
\frac{1}{4}xy^{4}\times 9
Divide \frac{1}{4}xy^{4} by \frac{1}{9} by multiplying \frac{1}{4}xy^{4} by the reciprocal of \frac{1}{9}.
\frac{9}{4}xy^{4}
Multiply \frac{1}{4} and 9 to get \frac{9}{4}.