Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1296-1296\sqrt{3}+324\left(\sqrt{3}\right)^{2}}{\left(81-45\sqrt{3}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(36-18\sqrt{3}\right)^{2}.
\frac{1296-1296\sqrt{3}+324\times 3}{\left(81-45\sqrt{3}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{1296-1296\sqrt{3}+972}{\left(81-45\sqrt{3}\right)^{2}}
Multiply 324 and 3 to get 972.
\frac{2268-1296\sqrt{3}}{\left(81-45\sqrt{3}\right)^{2}}
Add 1296 and 972 to get 2268.
\frac{2268-1296\sqrt{3}}{6561-7290\sqrt{3}+2025\left(\sqrt{3}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(81-45\sqrt{3}\right)^{2}.
\frac{2268-1296\sqrt{3}}{6561-7290\sqrt{3}+2025\times 3}
The square of \sqrt{3} is 3.
\frac{2268-1296\sqrt{3}}{6561-7290\sqrt{3}+6075}
Multiply 2025 and 3 to get 6075.
\frac{2268-1296\sqrt{3}}{12636-7290\sqrt{3}}
Add 6561 and 6075 to get 12636.
\frac{\left(2268-1296\sqrt{3}\right)\left(12636+7290\sqrt{3}\right)}{\left(12636-7290\sqrt{3}\right)\left(12636+7290\sqrt{3}\right)}
Rationalize the denominator of \frac{2268-1296\sqrt{3}}{12636-7290\sqrt{3}} by multiplying numerator and denominator by 12636+7290\sqrt{3}.
\frac{\left(2268-1296\sqrt{3}\right)\left(12636+7290\sqrt{3}\right)}{12636^{2}-\left(-7290\sqrt{3}\right)^{2}}
Consider \left(12636-7290\sqrt{3}\right)\left(12636+7290\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2268-1296\sqrt{3}\right)\left(12636+7290\sqrt{3}\right)}{159668496-\left(-7290\sqrt{3}\right)^{2}}
Calculate 12636 to the power of 2 and get 159668496.
\frac{\left(2268-1296\sqrt{3}\right)\left(12636+7290\sqrt{3}\right)}{159668496-\left(-7290\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-7290\sqrt{3}\right)^{2}.
\frac{\left(2268-1296\sqrt{3}\right)\left(12636+7290\sqrt{3}\right)}{159668496-53144100\left(\sqrt{3}\right)^{2}}
Calculate -7290 to the power of 2 and get 53144100.
\frac{\left(2268-1296\sqrt{3}\right)\left(12636+7290\sqrt{3}\right)}{159668496-53144100\times 3}
The square of \sqrt{3} is 3.
\frac{\left(2268-1296\sqrt{3}\right)\left(12636+7290\sqrt{3}\right)}{159668496-159432300}
Multiply 53144100 and 3 to get 159432300.
\frac{\left(2268-1296\sqrt{3}\right)\left(12636+7290\sqrt{3}\right)}{236196}
Subtract 159432300 from 159668496 to get 236196.
\frac{28658448+157464\sqrt{3}-9447840\left(\sqrt{3}\right)^{2}}{236196}
Use the distributive property to multiply 2268-1296\sqrt{3} by 12636+7290\sqrt{3} and combine like terms.
\frac{28658448+157464\sqrt{3}-9447840\times 3}{236196}
The square of \sqrt{3} is 3.
\frac{28658448+157464\sqrt{3}-28343520}{236196}
Multiply -9447840 and 3 to get -28343520.
\frac{314928+157464\sqrt{3}}{236196}
Subtract 28343520 from 28658448 to get 314928.
\frac{1296-1296\sqrt{3}+324\left(\sqrt{3}\right)^{2}}{\left(81-45\sqrt{3}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(36-18\sqrt{3}\right)^{2}.
\frac{1296-1296\sqrt{3}+324\times 3}{\left(81-45\sqrt{3}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{1296-1296\sqrt{3}+972}{\left(81-45\sqrt{3}\right)^{2}}
Multiply 324 and 3 to get 972.
\frac{2268-1296\sqrt{3}}{\left(81-45\sqrt{3}\right)^{2}}
Add 1296 and 972 to get 2268.
\frac{2268-1296\sqrt{3}}{6561-7290\sqrt{3}+2025\left(\sqrt{3}\right)^{2}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(81-45\sqrt{3}\right)^{2}.
\frac{2268-1296\sqrt{3}}{6561-7290\sqrt{3}+2025\times 3}
The square of \sqrt{3} is 3.
\frac{2268-1296\sqrt{3}}{6561-7290\sqrt{3}+6075}
Multiply 2025 and 3 to get 6075.
\frac{2268-1296\sqrt{3}}{12636-7290\sqrt{3}}
Add 6561 and 6075 to get 12636.
\frac{\left(2268-1296\sqrt{3}\right)\left(12636+7290\sqrt{3}\right)}{\left(12636-7290\sqrt{3}\right)\left(12636+7290\sqrt{3}\right)}
Rationalize the denominator of \frac{2268-1296\sqrt{3}}{12636-7290\sqrt{3}} by multiplying numerator and denominator by 12636+7290\sqrt{3}.
\frac{\left(2268-1296\sqrt{3}\right)\left(12636+7290\sqrt{3}\right)}{12636^{2}-\left(-7290\sqrt{3}\right)^{2}}
Consider \left(12636-7290\sqrt{3}\right)\left(12636+7290\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2268-1296\sqrt{3}\right)\left(12636+7290\sqrt{3}\right)}{159668496-\left(-7290\sqrt{3}\right)^{2}}
Calculate 12636 to the power of 2 and get 159668496.
\frac{\left(2268-1296\sqrt{3}\right)\left(12636+7290\sqrt{3}\right)}{159668496-\left(-7290\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-7290\sqrt{3}\right)^{2}.
\frac{\left(2268-1296\sqrt{3}\right)\left(12636+7290\sqrt{3}\right)}{159668496-53144100\left(\sqrt{3}\right)^{2}}
Calculate -7290 to the power of 2 and get 53144100.
\frac{\left(2268-1296\sqrt{3}\right)\left(12636+7290\sqrt{3}\right)}{159668496-53144100\times 3}
The square of \sqrt{3} is 3.
\frac{\left(2268-1296\sqrt{3}\right)\left(12636+7290\sqrt{3}\right)}{159668496-159432300}
Multiply 53144100 and 3 to get 159432300.
\frac{\left(2268-1296\sqrt{3}\right)\left(12636+7290\sqrt{3}\right)}{236196}
Subtract 159432300 from 159668496 to get 236196.
\frac{28658448+157464\sqrt{3}-9447840\left(\sqrt{3}\right)^{2}}{236196}
Use the distributive property to multiply 2268-1296\sqrt{3} by 12636+7290\sqrt{3} and combine like terms.
\frac{28658448+157464\sqrt{3}-9447840\times 3}{236196}
The square of \sqrt{3} is 3.
\frac{28658448+157464\sqrt{3}-28343520}{236196}
Multiply -9447840 and 3 to get -28343520.
\frac{314928+157464\sqrt{3}}{236196}
Subtract 28343520 from 28658448 to get 314928.