Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{9\left(\sqrt{3}\right)^{2}-6\sqrt{3}\sqrt{57}+\left(\sqrt{57}\right)^{2}}{14-3\sqrt{19}}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3\sqrt{3}-\sqrt{57}\right)^{2}.
\frac{9\times 3-6\sqrt{3}\sqrt{57}+\left(\sqrt{57}\right)^{2}}{14-3\sqrt{19}}
The square of \sqrt{3} is 3.
\frac{27-6\sqrt{3}\sqrt{57}+\left(\sqrt{57}\right)^{2}}{14-3\sqrt{19}}
Multiply 9 and 3 to get 27.
\frac{27-6\sqrt{3}\sqrt{3}\sqrt{19}+\left(\sqrt{57}\right)^{2}}{14-3\sqrt{19}}
Factor 57=3\times 19. Rewrite the square root of the product \sqrt{3\times 19} as the product of square roots \sqrt{3}\sqrt{19}.
\frac{27-6\times 3\sqrt{19}+\left(\sqrt{57}\right)^{2}}{14-3\sqrt{19}}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{27-18\sqrt{19}+\left(\sqrt{57}\right)^{2}}{14-3\sqrt{19}}
Multiply -6 and 3 to get -18.
\frac{27-18\sqrt{19}+57}{14-3\sqrt{19}}
The square of \sqrt{57} is 57.
\frac{84-18\sqrt{19}}{14-3\sqrt{19}}
Add 27 and 57 to get 84.
\frac{\left(84-18\sqrt{19}\right)\left(14+3\sqrt{19}\right)}{\left(14-3\sqrt{19}\right)\left(14+3\sqrt{19}\right)}
Rationalize the denominator of \frac{84-18\sqrt{19}}{14-3\sqrt{19}} by multiplying numerator and denominator by 14+3\sqrt{19}.
\frac{\left(84-18\sqrt{19}\right)\left(14+3\sqrt{19}\right)}{14^{2}-\left(-3\sqrt{19}\right)^{2}}
Consider \left(14-3\sqrt{19}\right)\left(14+3\sqrt{19}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(84-18\sqrt{19}\right)\left(14+3\sqrt{19}\right)}{196-\left(-3\sqrt{19}\right)^{2}}
Calculate 14 to the power of 2 and get 196.
\frac{\left(84-18\sqrt{19}\right)\left(14+3\sqrt{19}\right)}{196-\left(-3\right)^{2}\left(\sqrt{19}\right)^{2}}
Expand \left(-3\sqrt{19}\right)^{2}.
\frac{\left(84-18\sqrt{19}\right)\left(14+3\sqrt{19}\right)}{196-9\left(\sqrt{19}\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{\left(84-18\sqrt{19}\right)\left(14+3\sqrt{19}\right)}{196-9\times 19}
The square of \sqrt{19} is 19.
\frac{\left(84-18\sqrt{19}\right)\left(14+3\sqrt{19}\right)}{196-171}
Multiply 9 and 19 to get 171.
\frac{\left(84-18\sqrt{19}\right)\left(14+3\sqrt{19}\right)}{25}
Subtract 171 from 196 to get 25.
\frac{1176-54\left(\sqrt{19}\right)^{2}}{25}
Use the distributive property to multiply 84-18\sqrt{19} by 14+3\sqrt{19} and combine like terms.
\frac{1176-54\times 19}{25}
The square of \sqrt{19} is 19.
\frac{1176-1026}{25}
Multiply -54 and 19 to get -1026.
\frac{150}{25}
Subtract 1026 from 1176 to get 150.
6
Divide 150 by 25 to get 6.