Solve for x
x>\frac{1}{3}
Graph
Share
Copied to clipboard
9\left(2x-1\right)^{2}-4\left(3x-1\right)\left(3x+1\right)<12-3\left(2x+3\right)
Multiply both sides of the equation by 36, the least common multiple of 4,9,3,12. Since 36 is positive, the inequality direction remains the same.
9\left(4x^{2}-4x+1\right)-4\left(3x-1\right)\left(3x+1\right)<12-3\left(2x+3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-1\right)^{2}.
36x^{2}-36x+9-4\left(3x-1\right)\left(3x+1\right)<12-3\left(2x+3\right)
Use the distributive property to multiply 9 by 4x^{2}-4x+1.
36x^{2}-36x+9+\left(-12x+4\right)\left(3x+1\right)<12-3\left(2x+3\right)
Use the distributive property to multiply -4 by 3x-1.
36x^{2}-36x+9-36x^{2}+4<12-3\left(2x+3\right)
Use the distributive property to multiply -12x+4 by 3x+1 and combine like terms.
-36x+9+4<12-3\left(2x+3\right)
Combine 36x^{2} and -36x^{2} to get 0.
-36x+13<12-3\left(2x+3\right)
Add 9 and 4 to get 13.
-36x+13<12-6x-9
Use the distributive property to multiply -3 by 2x+3.
-36x+13<3-6x
Subtract 9 from 12 to get 3.
-36x+13+6x<3
Add 6x to both sides.
-30x+13<3
Combine -36x and 6x to get -30x.
-30x<3-13
Subtract 13 from both sides.
-30x<-10
Subtract 13 from 3 to get -10.
x>\frac{-10}{-30}
Divide both sides by -30. Since -30 is negative, the inequality direction is changed.
x>\frac{1}{3}
Reduce the fraction \frac{-10}{-30} to lowest terms by extracting and canceling out -10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}