Solve for x
x = -\frac{7}{4} = -1\frac{3}{4} = -1.75
x = \frac{17}{4} = 4\frac{1}{4} = 4.25
Graph
Share
Copied to clipboard
5\left(2x+2\right)^{2}+9\left(16-4x^{2}\right)=45
Multiply both sides of the equation by 45, the least common multiple of 9,5.
5\left(4x^{2}+8x+4\right)+9\left(16-4x^{2}\right)=45
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+2\right)^{2}.
20x^{2}+40x+20+9\left(16-4x^{2}\right)=45
Use the distributive property to multiply 5 by 4x^{2}+8x+4.
20x^{2}+40x+20+144-36x^{2}=45
Use the distributive property to multiply 9 by 16-4x^{2}.
20x^{2}+40x+164-36x^{2}=45
Add 20 and 144 to get 164.
-16x^{2}+40x+164=45
Combine 20x^{2} and -36x^{2} to get -16x^{2}.
-16x^{2}+40x+164-45=0
Subtract 45 from both sides.
-16x^{2}+40x+119=0
Subtract 45 from 164 to get 119.
a+b=40 ab=-16\times 119=-1904
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -16x^{2}+ax+bx+119. To find a and b, set up a system to be solved.
-1,1904 -2,952 -4,476 -7,272 -8,238 -14,136 -16,119 -17,112 -28,68 -34,56
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -1904.
-1+1904=1903 -2+952=950 -4+476=472 -7+272=265 -8+238=230 -14+136=122 -16+119=103 -17+112=95 -28+68=40 -34+56=22
Calculate the sum for each pair.
a=68 b=-28
The solution is the pair that gives sum 40.
\left(-16x^{2}+68x\right)+\left(-28x+119\right)
Rewrite -16x^{2}+40x+119 as \left(-16x^{2}+68x\right)+\left(-28x+119\right).
-4x\left(4x-17\right)-7\left(4x-17\right)
Factor out -4x in the first and -7 in the second group.
\left(4x-17\right)\left(-4x-7\right)
Factor out common term 4x-17 by using distributive property.
x=\frac{17}{4} x=-\frac{7}{4}
To find equation solutions, solve 4x-17=0 and -4x-7=0.
5\left(2x+2\right)^{2}+9\left(16-4x^{2}\right)=45
Multiply both sides of the equation by 45, the least common multiple of 9,5.
5\left(4x^{2}+8x+4\right)+9\left(16-4x^{2}\right)=45
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+2\right)^{2}.
20x^{2}+40x+20+9\left(16-4x^{2}\right)=45
Use the distributive property to multiply 5 by 4x^{2}+8x+4.
20x^{2}+40x+20+144-36x^{2}=45
Use the distributive property to multiply 9 by 16-4x^{2}.
20x^{2}+40x+164-36x^{2}=45
Add 20 and 144 to get 164.
-16x^{2}+40x+164=45
Combine 20x^{2} and -36x^{2} to get -16x^{2}.
-16x^{2}+40x+164-45=0
Subtract 45 from both sides.
-16x^{2}+40x+119=0
Subtract 45 from 164 to get 119.
x=\frac{-40±\sqrt{40^{2}-4\left(-16\right)\times 119}}{2\left(-16\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -16 for a, 40 for b, and 119 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-40±\sqrt{1600-4\left(-16\right)\times 119}}{2\left(-16\right)}
Square 40.
x=\frac{-40±\sqrt{1600+64\times 119}}{2\left(-16\right)}
Multiply -4 times -16.
x=\frac{-40±\sqrt{1600+7616}}{2\left(-16\right)}
Multiply 64 times 119.
x=\frac{-40±\sqrt{9216}}{2\left(-16\right)}
Add 1600 to 7616.
x=\frac{-40±96}{2\left(-16\right)}
Take the square root of 9216.
x=\frac{-40±96}{-32}
Multiply 2 times -16.
x=\frac{56}{-32}
Now solve the equation x=\frac{-40±96}{-32} when ± is plus. Add -40 to 96.
x=-\frac{7}{4}
Reduce the fraction \frac{56}{-32} to lowest terms by extracting and canceling out 8.
x=-\frac{136}{-32}
Now solve the equation x=\frac{-40±96}{-32} when ± is minus. Subtract 96 from -40.
x=\frac{17}{4}
Reduce the fraction \frac{-136}{-32} to lowest terms by extracting and canceling out 8.
x=-\frac{7}{4} x=\frac{17}{4}
The equation is now solved.
5\left(2x+2\right)^{2}+9\left(16-4x^{2}\right)=45
Multiply both sides of the equation by 45, the least common multiple of 9,5.
5\left(4x^{2}+8x+4\right)+9\left(16-4x^{2}\right)=45
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+2\right)^{2}.
20x^{2}+40x+20+9\left(16-4x^{2}\right)=45
Use the distributive property to multiply 5 by 4x^{2}+8x+4.
20x^{2}+40x+20+144-36x^{2}=45
Use the distributive property to multiply 9 by 16-4x^{2}.
20x^{2}+40x+164-36x^{2}=45
Add 20 and 144 to get 164.
-16x^{2}+40x+164=45
Combine 20x^{2} and -36x^{2} to get -16x^{2}.
-16x^{2}+40x=45-164
Subtract 164 from both sides.
-16x^{2}+40x=-119
Subtract 164 from 45 to get -119.
\frac{-16x^{2}+40x}{-16}=-\frac{119}{-16}
Divide both sides by -16.
x^{2}+\frac{40}{-16}x=-\frac{119}{-16}
Dividing by -16 undoes the multiplication by -16.
x^{2}-\frac{5}{2}x=-\frac{119}{-16}
Reduce the fraction \frac{40}{-16} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{5}{2}x=\frac{119}{16}
Divide -119 by -16.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{119}{16}+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{119+25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{2}x+\frac{25}{16}=9
Add \frac{119}{16} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{4}\right)^{2}=9
Factor x^{2}-\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{9}
Take the square root of both sides of the equation.
x-\frac{5}{4}=3 x-\frac{5}{4}=-3
Simplify.
x=\frac{17}{4} x=-\frac{7}{4}
Add \frac{5}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}