Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x\right)^{2}=9.59\times 10^{-3}\left(-x+200\right)
Variable x cannot be equal to 200 since division by zero is not defined. Multiply both sides of the equation by -x+200.
2^{2}x^{2}=9.59\times 10^{-3}\left(-x+200\right)
Expand \left(2x\right)^{2}.
4x^{2}=9.59\times 10^{-3}\left(-x+200\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}=9.59\times \frac{1}{1000}\left(-x+200\right)
Calculate 10 to the power of -3 and get \frac{1}{1000}.
4x^{2}=\frac{959}{100000}\left(-x+200\right)
Multiply 9.59 and \frac{1}{1000} to get \frac{959}{100000}.
4x^{2}=-\frac{959}{100000}x+\frac{959}{500}
Use the distributive property to multiply \frac{959}{100000} by -x+200.
4x^{2}+\frac{959}{100000}x=\frac{959}{500}
Add \frac{959}{100000}x to both sides.
4x^{2}+\frac{959}{100000}x-\frac{959}{500}=0
Subtract \frac{959}{500} from both sides.
x=\frac{-\frac{959}{100000}±\sqrt{\left(\frac{959}{100000}\right)^{2}-4\times 4\left(-\frac{959}{500}\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, \frac{959}{100000} for b, and -\frac{959}{500} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{959}{100000}±\sqrt{\frac{919681}{10000000000}-4\times 4\left(-\frac{959}{500}\right)}}{2\times 4}
Square \frac{959}{100000} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{959}{100000}±\sqrt{\frac{919681}{10000000000}-16\left(-\frac{959}{500}\right)}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\frac{959}{100000}±\sqrt{\frac{919681}{10000000000}+\frac{3836}{125}}}{2\times 4}
Multiply -16 times -\frac{959}{500}.
x=\frac{-\frac{959}{100000}±\sqrt{\frac{306880919681}{10000000000}}}{2\times 4}
Add \frac{919681}{10000000000} to \frac{3836}{125} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{959}{100000}±\frac{\sqrt{306880919681}}{100000}}{2\times 4}
Take the square root of \frac{306880919681}{10000000000}.
x=\frac{-\frac{959}{100000}±\frac{\sqrt{306880919681}}{100000}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{306880919681}-959}{8\times 100000}
Now solve the equation x=\frac{-\frac{959}{100000}±\frac{\sqrt{306880919681}}{100000}}{8} when ± is plus. Add -\frac{959}{100000} to \frac{\sqrt{306880919681}}{100000}.
x=\frac{\sqrt{306880919681}-959}{800000}
Divide \frac{-959+\sqrt{306880919681}}{100000} by 8.
x=\frac{-\sqrt{306880919681}-959}{8\times 100000}
Now solve the equation x=\frac{-\frac{959}{100000}±\frac{\sqrt{306880919681}}{100000}}{8} when ± is minus. Subtract \frac{\sqrt{306880919681}}{100000} from -\frac{959}{100000}.
x=\frac{-\sqrt{306880919681}-959}{800000}
Divide \frac{-959-\sqrt{306880919681}}{100000} by 8.
x=\frac{\sqrt{306880919681}-959}{800000} x=\frac{-\sqrt{306880919681}-959}{800000}
The equation is now solved.
\left(2x\right)^{2}=9.59\times 10^{-3}\left(-x+200\right)
Variable x cannot be equal to 200 since division by zero is not defined. Multiply both sides of the equation by -x+200.
2^{2}x^{2}=9.59\times 10^{-3}\left(-x+200\right)
Expand \left(2x\right)^{2}.
4x^{2}=9.59\times 10^{-3}\left(-x+200\right)
Calculate 2 to the power of 2 and get 4.
4x^{2}=9.59\times \frac{1}{1000}\left(-x+200\right)
Calculate 10 to the power of -3 and get \frac{1}{1000}.
4x^{2}=\frac{959}{100000}\left(-x+200\right)
Multiply 9.59 and \frac{1}{1000} to get \frac{959}{100000}.
4x^{2}=-\frac{959}{100000}x+\frac{959}{500}
Use the distributive property to multiply \frac{959}{100000} by -x+200.
4x^{2}+\frac{959}{100000}x=\frac{959}{500}
Add \frac{959}{100000}x to both sides.
\frac{4x^{2}+\frac{959}{100000}x}{4}=\frac{\frac{959}{500}}{4}
Divide both sides by 4.
x^{2}+\frac{\frac{959}{100000}}{4}x=\frac{\frac{959}{500}}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}+\frac{959}{400000}x=\frac{\frac{959}{500}}{4}
Divide \frac{959}{100000} by 4.
x^{2}+\frac{959}{400000}x=\frac{959}{2000}
Divide \frac{959}{500} by 4.
x^{2}+\frac{959}{400000}x+\left(\frac{959}{800000}\right)^{2}=\frac{959}{2000}+\left(\frac{959}{800000}\right)^{2}
Divide \frac{959}{400000}, the coefficient of the x term, by 2 to get \frac{959}{800000}. Then add the square of \frac{959}{800000} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{959}{400000}x+\frac{919681}{640000000000}=\frac{959}{2000}+\frac{919681}{640000000000}
Square \frac{959}{800000} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{959}{400000}x+\frac{919681}{640000000000}=\frac{306880919681}{640000000000}
Add \frac{959}{2000} to \frac{919681}{640000000000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{959}{800000}\right)^{2}=\frac{306880919681}{640000000000}
Factor x^{2}+\frac{959}{400000}x+\frac{919681}{640000000000}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{959}{800000}\right)^{2}}=\sqrt{\frac{306880919681}{640000000000}}
Take the square root of both sides of the equation.
x+\frac{959}{800000}=\frac{\sqrt{306880919681}}{800000} x+\frac{959}{800000}=-\frac{\sqrt{306880919681}}{800000}
Simplify.
x=\frac{\sqrt{306880919681}-959}{800000} x=\frac{-\sqrt{306880919681}-959}{800000}
Subtract \frac{959}{800000} from both sides of the equation.