Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(2x\right)^{2}=1.1\times 10^{-2}\left(x-1\right)^{2}
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)^{2}.
2^{2}x^{2}=1.1\times 10^{-2}\left(x-1\right)^{2}
Expand \left(2x\right)^{2}.
4x^{2}=1.1\times 10^{-2}\left(x-1\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x^{2}=1.1\times \frac{1}{100}\left(x-1\right)^{2}
Calculate 10 to the power of -2 and get \frac{1}{100}.
4x^{2}=\frac{11}{1000}\left(x-1\right)^{2}
Multiply 1.1 and \frac{1}{100} to get \frac{11}{1000}.
4x^{2}=\frac{11}{1000}\left(x^{2}-2x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x^{2}=\frac{11}{1000}x^{2}-\frac{11}{500}x+\frac{11}{1000}
Use the distributive property to multiply \frac{11}{1000} by x^{2}-2x+1.
4x^{2}-\frac{11}{1000}x^{2}=-\frac{11}{500}x+\frac{11}{1000}
Subtract \frac{11}{1000}x^{2} from both sides.
\frac{3989}{1000}x^{2}=-\frac{11}{500}x+\frac{11}{1000}
Combine 4x^{2} and -\frac{11}{1000}x^{2} to get \frac{3989}{1000}x^{2}.
\frac{3989}{1000}x^{2}+\frac{11}{500}x=\frac{11}{1000}
Add \frac{11}{500}x to both sides.
\frac{3989}{1000}x^{2}+\frac{11}{500}x-\frac{11}{1000}=0
Subtract \frac{11}{1000} from both sides.
x=\frac{-\frac{11}{500}±\sqrt{\left(\frac{11}{500}\right)^{2}-4\times \frac{3989}{1000}\left(-\frac{11}{1000}\right)}}{2\times \frac{3989}{1000}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3989}{1000} for a, \frac{11}{500} for b, and -\frac{11}{1000} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{11}{500}±\sqrt{\frac{121}{250000}-4\times \frac{3989}{1000}\left(-\frac{11}{1000}\right)}}{2\times \frac{3989}{1000}}
Square \frac{11}{500} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{11}{500}±\sqrt{\frac{121}{250000}-\frac{3989}{250}\left(-\frac{11}{1000}\right)}}{2\times \frac{3989}{1000}}
Multiply -4 times \frac{3989}{1000}.
x=\frac{-\frac{11}{500}±\sqrt{\frac{121+43879}{250000}}}{2\times \frac{3989}{1000}}
Multiply -\frac{3989}{250} times -\frac{11}{1000} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{11}{500}±\sqrt{\frac{22}{125}}}{2\times \frac{3989}{1000}}
Add \frac{121}{250000} to \frac{43879}{250000} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{11}{500}±\frac{\sqrt{110}}{25}}{2\times \frac{3989}{1000}}
Take the square root of \frac{22}{125}.
x=\frac{-\frac{11}{500}±\frac{\sqrt{110}}{25}}{\frac{3989}{500}}
Multiply 2 times \frac{3989}{1000}.
x=\frac{\frac{\sqrt{110}}{25}-\frac{11}{500}}{\frac{3989}{500}}
Now solve the equation x=\frac{-\frac{11}{500}±\frac{\sqrt{110}}{25}}{\frac{3989}{500}} when ± is plus. Add -\frac{11}{500} to \frac{\sqrt{110}}{25}.
x=\frac{20\sqrt{110}-11}{3989}
Divide -\frac{11}{500}+\frac{\sqrt{110}}{25} by \frac{3989}{500} by multiplying -\frac{11}{500}+\frac{\sqrt{110}}{25} by the reciprocal of \frac{3989}{500}.
x=\frac{-\frac{\sqrt{110}}{25}-\frac{11}{500}}{\frac{3989}{500}}
Now solve the equation x=\frac{-\frac{11}{500}±\frac{\sqrt{110}}{25}}{\frac{3989}{500}} when ± is minus. Subtract \frac{\sqrt{110}}{25} from -\frac{11}{500}.
x=\frac{-20\sqrt{110}-11}{3989}
Divide -\frac{11}{500}-\frac{\sqrt{110}}{25} by \frac{3989}{500} by multiplying -\frac{11}{500}-\frac{\sqrt{110}}{25} by the reciprocal of \frac{3989}{500}.
x=\frac{20\sqrt{110}-11}{3989} x=\frac{-20\sqrt{110}-11}{3989}
The equation is now solved.
\left(2x\right)^{2}=1.1\times 10^{-2}\left(x-1\right)^{2}
Variable x cannot be equal to 1 since division by zero is not defined. Multiply both sides of the equation by \left(x-1\right)^{2}.
2^{2}x^{2}=1.1\times 10^{-2}\left(x-1\right)^{2}
Expand \left(2x\right)^{2}.
4x^{2}=1.1\times 10^{-2}\left(x-1\right)^{2}
Calculate 2 to the power of 2 and get 4.
4x^{2}=1.1\times \frac{1}{100}\left(x-1\right)^{2}
Calculate 10 to the power of -2 and get \frac{1}{100}.
4x^{2}=\frac{11}{1000}\left(x-1\right)^{2}
Multiply 1.1 and \frac{1}{100} to get \frac{11}{1000}.
4x^{2}=\frac{11}{1000}\left(x^{2}-2x+1\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-1\right)^{2}.
4x^{2}=\frac{11}{1000}x^{2}-\frac{11}{500}x+\frac{11}{1000}
Use the distributive property to multiply \frac{11}{1000} by x^{2}-2x+1.
4x^{2}-\frac{11}{1000}x^{2}=-\frac{11}{500}x+\frac{11}{1000}
Subtract \frac{11}{1000}x^{2} from both sides.
\frac{3989}{1000}x^{2}=-\frac{11}{500}x+\frac{11}{1000}
Combine 4x^{2} and -\frac{11}{1000}x^{2} to get \frac{3989}{1000}x^{2}.
\frac{3989}{1000}x^{2}+\frac{11}{500}x=\frac{11}{1000}
Add \frac{11}{500}x to both sides.
\frac{\frac{3989}{1000}x^{2}+\frac{11}{500}x}{\frac{3989}{1000}}=\frac{\frac{11}{1000}}{\frac{3989}{1000}}
Divide both sides of the equation by \frac{3989}{1000}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{11}{500}}{\frac{3989}{1000}}x=\frac{\frac{11}{1000}}{\frac{3989}{1000}}
Dividing by \frac{3989}{1000} undoes the multiplication by \frac{3989}{1000}.
x^{2}+\frac{22}{3989}x=\frac{\frac{11}{1000}}{\frac{3989}{1000}}
Divide \frac{11}{500} by \frac{3989}{1000} by multiplying \frac{11}{500} by the reciprocal of \frac{3989}{1000}.
x^{2}+\frac{22}{3989}x=\frac{11}{3989}
Divide \frac{11}{1000} by \frac{3989}{1000} by multiplying \frac{11}{1000} by the reciprocal of \frac{3989}{1000}.
x^{2}+\frac{22}{3989}x+\left(\frac{11}{3989}\right)^{2}=\frac{11}{3989}+\left(\frac{11}{3989}\right)^{2}
Divide \frac{22}{3989}, the coefficient of the x term, by 2 to get \frac{11}{3989}. Then add the square of \frac{11}{3989} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{22}{3989}x+\frac{121}{15912121}=\frac{11}{3989}+\frac{121}{15912121}
Square \frac{11}{3989} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{22}{3989}x+\frac{121}{15912121}=\frac{44000}{15912121}
Add \frac{11}{3989} to \frac{121}{15912121} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{11}{3989}\right)^{2}=\frac{44000}{15912121}
Factor x^{2}+\frac{22}{3989}x+\frac{121}{15912121}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{3989}\right)^{2}}=\sqrt{\frac{44000}{15912121}}
Take the square root of both sides of the equation.
x+\frac{11}{3989}=\frac{20\sqrt{110}}{3989} x+\frac{11}{3989}=-\frac{20\sqrt{110}}{3989}
Simplify.
x=\frac{20\sqrt{110}-11}{3989} x=\frac{-20\sqrt{110}-11}{3989}
Subtract \frac{11}{3989} from both sides of the equation.