Solve for x
x = \frac{\sqrt{4766809} + 4197}{4000} \approx 1.595075579
x=\frac{4197-\sqrt{4766809}}{4000}\approx 0.503424421
Graph
Share
Copied to clipboard
\left(2-2x\right)^{2}=0.394\left(x+2\right)
Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by x+2.
4-8x+4x^{2}=0.394\left(x+2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-2x\right)^{2}.
4-8x+4x^{2}=0.394x+0.788
Use the distributive property to multiply 0.394 by x+2.
4-8x+4x^{2}-0.394x=0.788
Subtract 0.394x from both sides.
4-8.394x+4x^{2}=0.788
Combine -8x and -0.394x to get -8.394x.
4-8.394x+4x^{2}-0.788=0
Subtract 0.788 from both sides.
3.212-8.394x+4x^{2}=0
Subtract 0.788 from 4 to get 3.212.
4x^{2}-8.394x+3.212=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8.394\right)±\sqrt{\left(-8.394\right)^{2}-4\times 4\times 3.212}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -8.394 for b, and 3.212 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8.394\right)±\sqrt{70.459236-4\times 4\times 3.212}}{2\times 4}
Square -8.394 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-8.394\right)±\sqrt{70.459236-16\times 3.212}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-8.394\right)±\sqrt{70.459236-51.392}}{2\times 4}
Multiply -16 times 3.212.
x=\frac{-\left(-8.394\right)±\sqrt{19.067236}}{2\times 4}
Add 70.459236 to -51.392 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-8.394\right)±\frac{\sqrt{4766809}}{500}}{2\times 4}
Take the square root of 19.067236.
x=\frac{8.394±\frac{\sqrt{4766809}}{500}}{2\times 4}
The opposite of -8.394 is 8.394.
x=\frac{8.394±\frac{\sqrt{4766809}}{500}}{8}
Multiply 2 times 4.
x=\frac{\sqrt{4766809}+4197}{8\times 500}
Now solve the equation x=\frac{8.394±\frac{\sqrt{4766809}}{500}}{8} when ± is plus. Add 8.394 to \frac{\sqrt{4766809}}{500}.
x=\frac{\sqrt{4766809}+4197}{4000}
Divide \frac{4197+\sqrt{4766809}}{500} by 8.
x=\frac{4197-\sqrt{4766809}}{8\times 500}
Now solve the equation x=\frac{8.394±\frac{\sqrt{4766809}}{500}}{8} when ± is minus. Subtract \frac{\sqrt{4766809}}{500} from 8.394.
x=\frac{4197-\sqrt{4766809}}{4000}
Divide \frac{4197-\sqrt{4766809}}{500} by 8.
x=\frac{\sqrt{4766809}+4197}{4000} x=\frac{4197-\sqrt{4766809}}{4000}
The equation is now solved.
\left(2-2x\right)^{2}=0.394\left(x+2\right)
Variable x cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by x+2.
4-8x+4x^{2}=0.394\left(x+2\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2-2x\right)^{2}.
4-8x+4x^{2}=0.394x+0.788
Use the distributive property to multiply 0.394 by x+2.
4-8x+4x^{2}-0.394x=0.788
Subtract 0.394x from both sides.
4-8.394x+4x^{2}=0.788
Combine -8x and -0.394x to get -8.394x.
-8.394x+4x^{2}=0.788-4
Subtract 4 from both sides.
-8.394x+4x^{2}=-3.212
Subtract 4 from 0.788 to get -3.212.
4x^{2}-8.394x=-3.212
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{4x^{2}-8.394x}{4}=-\frac{3.212}{4}
Divide both sides by 4.
x^{2}+\left(-\frac{8.394}{4}\right)x=-\frac{3.212}{4}
Dividing by 4 undoes the multiplication by 4.
x^{2}-2.0985x=-\frac{3.212}{4}
Divide -8.394 by 4.
x^{2}-2.0985x=-0.803
Divide -3.212 by 4.
x^{2}-2.0985x+\left(-1.04925\right)^{2}=-0.803+\left(-1.04925\right)^{2}
Divide -2.0985, the coefficient of the x term, by 2 to get -1.04925. Then add the square of -1.04925 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2.0985x+1.1009255625=-0.803+1.1009255625
Square -1.04925 by squaring both the numerator and the denominator of the fraction.
x^{2}-2.0985x+1.1009255625=0.2979255625
Add -0.803 to 1.1009255625 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-1.04925\right)^{2}=0.2979255625
Factor x^{2}-2.0985x+1.1009255625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1.04925\right)^{2}}=\sqrt{0.2979255625}
Take the square root of both sides of the equation.
x-1.04925=\frac{\sqrt{4766809}}{4000} x-1.04925=-\frac{\sqrt{4766809}}{4000}
Simplify.
x=\frac{\sqrt{4766809}+4197}{4000} x=\frac{4197-\sqrt{4766809}}{4000}
Add 1.04925 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}