Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(1-2i\right)^{2}+2-2i}{\left(1-2i\right)^{3}-1}
Do the additions in 1-2i+1.
\frac{-3-4i+2-2i}{\left(1-2i\right)^{3}-1}
Calculate 1-2i to the power of 2 and get -3-4i.
\frac{-1-6i}{\left(1-2i\right)^{3}-1}
Do the additions in -3-4i+2-2i.
\frac{-1-6i}{-11+2i-1}
Calculate 1-2i to the power of 3 and get -11+2i.
\frac{-1-6i}{-12+2i}
Subtract 1 from -11+2i to get -12+2i.
\frac{\left(-1-6i\right)\left(-12-2i\right)}{\left(-12+2i\right)\left(-12-2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, -12-2i.
\frac{74i}{148}
Do the multiplications in \frac{\left(-1-6i\right)\left(-12-2i\right)}{\left(-12+2i\right)\left(-12-2i\right)}.
\frac{1}{2}i
Divide 74i by 148 to get \frac{1}{2}i.
Re(\frac{\left(1-2i\right)^{2}+2-2i}{\left(1-2i\right)^{3}-1})
Do the additions in 1-2i+1.
Re(\frac{-3-4i+2-2i}{\left(1-2i\right)^{3}-1})
Calculate 1-2i to the power of 2 and get -3-4i.
Re(\frac{-1-6i}{\left(1-2i\right)^{3}-1})
Do the additions in -3-4i+2-2i.
Re(\frac{-1-6i}{-11+2i-1})
Calculate 1-2i to the power of 3 and get -11+2i.
Re(\frac{-1-6i}{-12+2i})
Subtract 1 from -11+2i to get -12+2i.
Re(\frac{\left(-1-6i\right)\left(-12-2i\right)}{\left(-12+2i\right)\left(-12-2i\right)})
Multiply both numerator and denominator of \frac{-1-6i}{-12+2i} by the complex conjugate of the denominator, -12-2i.
Re(\frac{74i}{148})
Do the multiplications in \frac{\left(-1-6i\right)\left(-12-2i\right)}{\left(-12+2i\right)\left(-12-2i\right)}.
Re(\frac{1}{2}i)
Divide 74i by 148 to get \frac{1}{2}i.
0
The real part of \frac{1}{2}i is 0.