Evaluate
-\frac{2\sqrt{2}}{3}-1\approx -1.942809042
Expand
-\frac{2 \sqrt{2}}{3} - 1 = -1.942809042
Share
Copied to clipboard
\frac{\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{3^{2}\left(-1\right)}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{6}+1\sqrt{3}\right)^{2}.
\frac{6+2\sqrt{6}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{3^{2}\left(-1\right)}
The square of \sqrt{6} is 6.
\frac{6+2\sqrt{3}\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{3^{2}\left(-1\right)}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{6+2\times 3\sqrt{2}+\left(\sqrt{3}\right)^{2}}{3^{2}\left(-1\right)}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{6+6\sqrt{2}+\left(\sqrt{3}\right)^{2}}{3^{2}\left(-1\right)}
Multiply 2 and 3 to get 6.
\frac{6+6\sqrt{2}+3}{3^{2}\left(-1\right)}
The square of \sqrt{3} is 3.
\frac{9+6\sqrt{2}}{3^{2}\left(-1\right)}
Add 6 and 3 to get 9.
\frac{9+6\sqrt{2}}{9\left(-1\right)}
Calculate 3 to the power of 2 and get 9.
\frac{9+6\sqrt{2}}{-9}
Multiply 9 and -1 to get -9.
\frac{\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{3^{2}\left(-1\right)}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{6}+1\sqrt{3}\right)^{2}.
\frac{6+2\sqrt{6}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{3^{2}\left(-1\right)}
The square of \sqrt{6} is 6.
\frac{6+2\sqrt{3}\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}}{3^{2}\left(-1\right)}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{6+2\times 3\sqrt{2}+\left(\sqrt{3}\right)^{2}}{3^{2}\left(-1\right)}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{6+6\sqrt{2}+\left(\sqrt{3}\right)^{2}}{3^{2}\left(-1\right)}
Multiply 2 and 3 to get 6.
\frac{6+6\sqrt{2}+3}{3^{2}\left(-1\right)}
The square of \sqrt{3} is 3.
\frac{9+6\sqrt{2}}{3^{2}\left(-1\right)}
Add 6 and 3 to get 9.
\frac{9+6\sqrt{2}}{9\left(-1\right)}
Calculate 3 to the power of 2 and get 9.
\frac{9+6\sqrt{2}}{-9}
Multiply 9 and -1 to get -9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}