Evaluate
\frac{5}{36}\approx 0.138888889
Factor
\frac{5}{2 ^ {2} \cdot 3 ^ {2}} = 0.1388888888888889
Share
Copied to clipboard
\frac{\left(\sqrt{5}+\frac{5}{6}\right)^{2}}{\left(\sqrt{5}+6\right)^{2}}
Subtract \frac{1}{6} from 1 to get \frac{5}{6}.
\frac{\left(\sqrt{5}\right)^{2}+\frac{5}{3}\sqrt{5}+\frac{25}{36}}{\left(\sqrt{5}+6\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{5}+\frac{5}{6}\right)^{2}.
\frac{5+\frac{5}{3}\sqrt{5}+\frac{25}{36}}{\left(\sqrt{5}+6\right)^{2}}
The square of \sqrt{5} is 5.
\frac{\frac{205}{36}+\frac{5}{3}\sqrt{5}}{\left(\sqrt{5}+6\right)^{2}}
Add 5 and \frac{25}{36} to get \frac{205}{36}.
\frac{\frac{205}{36}+\frac{5}{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}+12\sqrt{5}+36}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{5}+6\right)^{2}.
\frac{\frac{205}{36}+\frac{5}{3}\sqrt{5}}{5+12\sqrt{5}+36}
The square of \sqrt{5} is 5.
\frac{\frac{205}{36}+\frac{5}{3}\sqrt{5}}{41+12\sqrt{5}}
Add 5 and 36 to get 41.
\frac{\left(\frac{205}{36}+\frac{5}{3}\sqrt{5}\right)\left(41-12\sqrt{5}\right)}{\left(41+12\sqrt{5}\right)\left(41-12\sqrt{5}\right)}
Rationalize the denominator of \frac{\frac{205}{36}+\frac{5}{3}\sqrt{5}}{41+12\sqrt{5}} by multiplying numerator and denominator by 41-12\sqrt{5}.
\frac{\left(\frac{205}{36}+\frac{5}{3}\sqrt{5}\right)\left(41-12\sqrt{5}\right)}{41^{2}-\left(12\sqrt{5}\right)^{2}}
Consider \left(41+12\sqrt{5}\right)\left(41-12\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\frac{205}{36}+\frac{5}{3}\sqrt{5}\right)\left(41-12\sqrt{5}\right)}{1681-\left(12\sqrt{5}\right)^{2}}
Calculate 41 to the power of 2 and get 1681.
\frac{\left(\frac{205}{36}+\frac{5}{3}\sqrt{5}\right)\left(41-12\sqrt{5}\right)}{1681-12^{2}\left(\sqrt{5}\right)^{2}}
Expand \left(12\sqrt{5}\right)^{2}.
\frac{\left(\frac{205}{36}+\frac{5}{3}\sqrt{5}\right)\left(41-12\sqrt{5}\right)}{1681-144\left(\sqrt{5}\right)^{2}}
Calculate 12 to the power of 2 and get 144.
\frac{\left(\frac{205}{36}+\frac{5}{3}\sqrt{5}\right)\left(41-12\sqrt{5}\right)}{1681-144\times 5}
The square of \sqrt{5} is 5.
\frac{\left(\frac{205}{36}+\frac{5}{3}\sqrt{5}\right)\left(41-12\sqrt{5}\right)}{1681-720}
Multiply 144 and 5 to get 720.
\frac{\left(\frac{205}{36}+\frac{5}{3}\sqrt{5}\right)\left(41-12\sqrt{5}\right)}{961}
Subtract 720 from 1681 to get 961.
\frac{\frac{8405}{36}-20\left(\sqrt{5}\right)^{2}}{961}
Use the distributive property to multiply \frac{205}{36}+\frac{5}{3}\sqrt{5} by 41-12\sqrt{5} and combine like terms.
\frac{\frac{8405}{36}-20\times 5}{961}
The square of \sqrt{5} is 5.
\frac{\frac{8405}{36}-100}{961}
Multiply -20 and 5 to get -100.
\frac{\frac{4805}{36}}{961}
Subtract 100 from \frac{8405}{36} to get \frac{4805}{36}.
\frac{4805}{36\times 961}
Express \frac{\frac{4805}{36}}{961} as a single fraction.
\frac{4805}{34596}
Multiply 36 and 961 to get 34596.
\frac{5}{36}
Reduce the fraction \frac{4805}{34596} to lowest terms by extracting and canceling out 961.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}