Evaluate
2-2\sqrt{2}\approx -0.828427125
Share
Copied to clipboard
\frac{\left(2+\sqrt{8}\right)^{2}-4\sqrt{4\times 8}}{\sqrt{4}-\sqrt{8}}
Calculate the square root of 4 and get 2.
\frac{\left(2+2\sqrt{2}\right)^{2}-4\sqrt{4\times 8}}{\sqrt{4}-\sqrt{8}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{4+8\sqrt{2}+4\left(\sqrt{2}\right)^{2}-4\sqrt{4\times 8}}{\sqrt{4}-\sqrt{8}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+2\sqrt{2}\right)^{2}.
\frac{4+8\sqrt{2}+4\times 2-4\sqrt{4\times 8}}{\sqrt{4}-\sqrt{8}}
The square of \sqrt{2} is 2.
\frac{4+8\sqrt{2}+8-4\sqrt{4\times 8}}{\sqrt{4}-\sqrt{8}}
Multiply 4 and 2 to get 8.
\frac{12+8\sqrt{2}-4\sqrt{4\times 8}}{\sqrt{4}-\sqrt{8}}
Add 4 and 8 to get 12.
\frac{12+8\sqrt{2}-4\sqrt{32}}{\sqrt{4}-\sqrt{8}}
Multiply 4 and 8 to get 32.
\frac{12+8\sqrt{2}-4\times 4\sqrt{2}}{\sqrt{4}-\sqrt{8}}
Factor 32=4^{2}\times 2. Rewrite the square root of the product \sqrt{4^{2}\times 2} as the product of square roots \sqrt{4^{2}}\sqrt{2}. Take the square root of 4^{2}.
\frac{12+8\sqrt{2}-16\sqrt{2}}{\sqrt{4}-\sqrt{8}}
Multiply 4 and 4 to get 16.
\frac{12-8\sqrt{2}}{\sqrt{4}-\sqrt{8}}
Combine 8\sqrt{2} and -16\sqrt{2} to get -8\sqrt{2}.
\frac{12-8\sqrt{2}}{2-\sqrt{8}}
Calculate the square root of 4 and get 2.
\frac{12-8\sqrt{2}}{2-2\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\left(12-8\sqrt{2}\right)\left(2+2\sqrt{2}\right)}{\left(2-2\sqrt{2}\right)\left(2+2\sqrt{2}\right)}
Rationalize the denominator of \frac{12-8\sqrt{2}}{2-2\sqrt{2}} by multiplying numerator and denominator by 2+2\sqrt{2}.
\frac{\left(12-8\sqrt{2}\right)\left(2+2\sqrt{2}\right)}{2^{2}-\left(-2\sqrt{2}\right)^{2}}
Consider \left(2-2\sqrt{2}\right)\left(2+2\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(12-8\sqrt{2}\right)\left(2+2\sqrt{2}\right)}{4-\left(-2\sqrt{2}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(12-8\sqrt{2}\right)\left(2+2\sqrt{2}\right)}{4-\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(-2\sqrt{2}\right)^{2}.
\frac{\left(12-8\sqrt{2}\right)\left(2+2\sqrt{2}\right)}{4-4\left(\sqrt{2}\right)^{2}}
Calculate -2 to the power of 2 and get 4.
\frac{\left(12-8\sqrt{2}\right)\left(2+2\sqrt{2}\right)}{4-4\times 2}
The square of \sqrt{2} is 2.
\frac{\left(12-8\sqrt{2}\right)\left(2+2\sqrt{2}\right)}{4-8}
Multiply 4 and 2 to get 8.
\frac{\left(12-8\sqrt{2}\right)\left(2+2\sqrt{2}\right)}{-4}
Subtract 8 from 4 to get -4.
\frac{24+8\sqrt{2}-16\left(\sqrt{2}\right)^{2}}{-4}
Use the distributive property to multiply 12-8\sqrt{2} by 2+2\sqrt{2} and combine like terms.
\frac{24+8\sqrt{2}-16\times 2}{-4}
The square of \sqrt{2} is 2.
\frac{24+8\sqrt{2}-32}{-4}
Multiply -16 and 2 to get -32.
\frac{-8+8\sqrt{2}}{-4}
Subtract 32 from 24 to get -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}