Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(2\sqrt{3}+1-1\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Combine \sqrt{3} and \sqrt{3} to get 2\sqrt{3}.
\frac{\left(2\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Subtract 1 from 1 to get 0.
\frac{2^{2}\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{4\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{4\times 3}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
The square of \sqrt{3} is 3.
\frac{12}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Multiply 4 and 3 to get 12.
\frac{12}{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+1\right)^{2}.
\frac{12}{3+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
The square of \sqrt{3} is 3.
\frac{12}{4+2\sqrt{3}-\left(\sqrt{3}-1\right)^{2}}
Add 3 and 1 to get 4.
\frac{12}{4+2\sqrt{3}-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
\frac{12}{4+2\sqrt{3}-\left(3-2\sqrt{3}+1\right)}
The square of \sqrt{3} is 3.
\frac{12}{4+2\sqrt{3}-\left(4-2\sqrt{3}\right)}
Add 3 and 1 to get 4.
\frac{12}{4+2\sqrt{3}-4+2\sqrt{3}}
To find the opposite of 4-2\sqrt{3}, find the opposite of each term.
\frac{12}{2\sqrt{3}+2\sqrt{3}}
Subtract 4 from 4 to get 0.
\frac{12}{4\sqrt{3}}
Combine 2\sqrt{3} and 2\sqrt{3} to get 4\sqrt{3}.
\frac{12\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{12}{4\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{12\sqrt{3}}{4\times 3}
The square of \sqrt{3} is 3.
\sqrt{3}
Cancel out 3\times 4 in both numerator and denominator.
\frac{\left(2\sqrt{3}+1-1\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Combine \sqrt{3} and \sqrt{3} to get 2\sqrt{3}.
\frac{\left(2\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Subtract 1 from 1 to get 0.
\frac{2^{2}\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{4\left(\sqrt{3}\right)^{2}}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{4\times 3}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
The square of \sqrt{3} is 3.
\frac{12}{\left(\sqrt{3}+1\right)^{2}-\left(\sqrt{3}-1\right)^{2}}
Multiply 4 and 3 to get 12.
\frac{12}{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+1\right)^{2}.
\frac{12}{3+2\sqrt{3}+1-\left(\sqrt{3}-1\right)^{2}}
The square of \sqrt{3} is 3.
\frac{12}{4+2\sqrt{3}-\left(\sqrt{3}-1\right)^{2}}
Add 3 and 1 to get 4.
\frac{12}{4+2\sqrt{3}-\left(\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1\right)}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
\frac{12}{4+2\sqrt{3}-\left(3-2\sqrt{3}+1\right)}
The square of \sqrt{3} is 3.
\frac{12}{4+2\sqrt{3}-\left(4-2\sqrt{3}\right)}
Add 3 and 1 to get 4.
\frac{12}{4+2\sqrt{3}-4+2\sqrt{3}}
To find the opposite of 4-2\sqrt{3}, find the opposite of each term.
\frac{12}{2\sqrt{3}+2\sqrt{3}}
Subtract 4 from 4 to get 0.
\frac{12}{4\sqrt{3}}
Combine 2\sqrt{3} and 2\sqrt{3} to get 4\sqrt{3}.
\frac{12\sqrt{3}}{4\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{12}{4\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{12\sqrt{3}}{4\times 3}
The square of \sqrt{3} is 3.
\sqrt{3}
Cancel out 3\times 4 in both numerator and denominator.