Evaluate
\frac{86}{45}\approx 1.911111111
Factor
\frac{2 \cdot 43}{3 ^ {2} \cdot 5} = 1\frac{41}{45} = 1.9111111111111112
Share
Copied to clipboard
\frac{\left(\sqrt{3}\right)^{-2}}{\left(\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{-2}}-\left(\log_{2}\left(32\right)\right)^{-1}+\frac{2}{7}\times \left(\frac{1}{7}\right)^{-1}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(\sqrt{3}\right)^{-2}}{\left(\frac{\sqrt{3}}{3}\right)^{-2}}-\left(\log_{2}\left(32\right)\right)^{-1}+\frac{2}{7}\times \left(\frac{1}{7}\right)^{-1}
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{3}\right)^{-2}}{\frac{\left(\sqrt{3}\right)^{-2}}{3^{-2}}}-\left(\log_{2}\left(32\right)\right)^{-1}+\frac{2}{7}\times \left(\frac{1}{7}\right)^{-1}
To raise \frac{\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{3}\right)^{-2}}{\frac{\left(\sqrt{3}\right)^{-2}}{\frac{1}{9}}}-\left(\log_{2}\left(32\right)\right)^{-1}+\frac{2}{7}\times \left(\frac{1}{7}\right)^{-1}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{\left(\sqrt{3}\right)^{-2}}{\frac{\left(\sqrt{3}\right)^{-2}}{\frac{1}{9}}}-5^{-1}+\frac{2}{7}\times \left(\frac{1}{7}\right)^{-1}
The base 2 logarithm of 32 is 5.
\frac{\left(\sqrt{3}\right)^{-2}}{\frac{\left(\sqrt{3}\right)^{-2}}{\frac{1}{9}}}-\frac{1}{5}+\frac{2}{7}\times \left(\frac{1}{7}\right)^{-1}
Calculate 5 to the power of -1 and get \frac{1}{5}.
\frac{\left(\sqrt{3}\right)^{-2}}{\frac{\left(\sqrt{3}\right)^{-2}}{\frac{1}{9}}}-\frac{1}{5}+\frac{2}{7}\times 7
Calculate \frac{1}{7} to the power of -1 and get 7.
\frac{\left(\sqrt{3}\right)^{-2}}{\frac{\left(\sqrt{3}\right)^{-2}}{\frac{1}{9}}}-\frac{1}{5}+2
Multiply \frac{2}{7} and 7 to get 2.
\frac{\left(\sqrt{3}\right)^{-2}}{\frac{\left(\sqrt{3}\right)^{-2}}{\frac{1}{9}}}+\frac{9}{5}
Add -\frac{1}{5} and 2 to get \frac{9}{5}.
\frac{\left(\sqrt{3}\right)^{-2}\times \frac{1}{9}}{\left(\sqrt{3}\right)^{-2}}+\frac{9}{5}
Divide \left(\sqrt{3}\right)^{-2} by \frac{\left(\sqrt{3}\right)^{-2}}{\frac{1}{9}} by multiplying \left(\sqrt{3}\right)^{-2} by the reciprocal of \frac{\left(\sqrt{3}\right)^{-2}}{\frac{1}{9}}.
\frac{1}{9}+\frac{9}{5}
Cancel out \left(\sqrt{3}\right)^{-2} in both numerator and denominator.
\frac{86}{45}
Add \frac{1}{9} and \frac{9}{5} to get \frac{86}{45}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}