Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Share

\frac{\left(\sqrt{3}\right)^{-2}}{\left(\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{-2}}-\left(\log_{2}\left(32\right)\right)^{-1}+\frac{2}{7}\times \left(\frac{1}{7}\right)^{-1}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(\sqrt{3}\right)^{-2}}{\left(\frac{\sqrt{3}}{3}\right)^{-2}}-\left(\log_{2}\left(32\right)\right)^{-1}+\frac{2}{7}\times \left(\frac{1}{7}\right)^{-1}
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{3}\right)^{-2}}{\frac{\left(\sqrt{3}\right)^{-2}}{3^{-2}}}-\left(\log_{2}\left(32\right)\right)^{-1}+\frac{2}{7}\times \left(\frac{1}{7}\right)^{-1}
To raise \frac{\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(\sqrt{3}\right)^{-2}}{\frac{\left(\sqrt{3}\right)^{-2}}{\frac{1}{9}}}-\left(\log_{2}\left(32\right)\right)^{-1}+\frac{2}{7}\times \left(\frac{1}{7}\right)^{-1}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{\left(\sqrt{3}\right)^{-2}}{\frac{\left(\sqrt{3}\right)^{-2}}{\frac{1}{9}}}-5^{-1}+\frac{2}{7}\times \left(\frac{1}{7}\right)^{-1}
The base 2 logarithm of 32 is 5.
\frac{\left(\sqrt{3}\right)^{-2}}{\frac{\left(\sqrt{3}\right)^{-2}}{\frac{1}{9}}}-\frac{1}{5}+\frac{2}{7}\times \left(\frac{1}{7}\right)^{-1}
Calculate 5 to the power of -1 and get \frac{1}{5}.
\frac{\left(\sqrt{3}\right)^{-2}}{\frac{\left(\sqrt{3}\right)^{-2}}{\frac{1}{9}}}-\frac{1}{5}+\frac{2}{7}\times 7
Calculate \frac{1}{7} to the power of -1 and get 7.
\frac{\left(\sqrt{3}\right)^{-2}}{\frac{\left(\sqrt{3}\right)^{-2}}{\frac{1}{9}}}-\frac{1}{5}+2
Multiply \frac{2}{7} and 7 to get 2.
\frac{\left(\sqrt{3}\right)^{-2}}{\frac{\left(\sqrt{3}\right)^{-2}}{\frac{1}{9}}}+\frac{9}{5}
Add -\frac{1}{5} and 2 to get \frac{9}{5}.
\frac{\left(\sqrt{3}\right)^{-2}\times \frac{1}{9}}{\left(\sqrt{3}\right)^{-2}}+\frac{9}{5}
Divide \left(\sqrt{3}\right)^{-2} by \frac{\left(\sqrt{3}\right)^{-2}}{\frac{1}{9}} by multiplying \left(\sqrt{3}\right)^{-2} by the reciprocal of \frac{\left(\sqrt{3}\right)^{-2}}{\frac{1}{9}}.
\frac{1}{9}+\frac{9}{5}
Cancel out \left(\sqrt{3}\right)^{-2} in both numerator and denominator.
\frac{86}{45}
Add \frac{1}{9} and \frac{9}{5} to get \frac{86}{45}.