Evaluate
\frac{1}{2}=0.5
Factor
\frac{1}{2} = 0.5
Share
Copied to clipboard
\frac{2+\left(\frac{\sqrt{6}+\sqrt{2}}{2}\right)^{2}-\left(\sqrt{3}\right)^{2}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
The square of \sqrt{2} is 2.
\frac{2+\frac{\left(\sqrt{6}+\sqrt{2}\right)^{2}}{2^{2}}-\left(\sqrt{3}\right)^{2}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
To raise \frac{\sqrt{6}+\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{2\times 2^{2}}{2^{2}}+\frac{\left(\sqrt{6}+\sqrt{2}\right)^{2}}{2^{2}}-\left(\sqrt{3}\right)^{2}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{2^{2}}{2^{2}}.
\frac{\frac{2\times 2^{2}+\left(\sqrt{6}+\sqrt{2}\right)^{2}}{2^{2}}-\left(\sqrt{3}\right)^{2}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
Since \frac{2\times 2^{2}}{2^{2}} and \frac{\left(\sqrt{6}+\sqrt{2}\right)^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{\frac{8+\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}}{2^{2}}-\left(\sqrt{3}\right)^{2}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
Do the multiplications in 2\times 2^{2}+\left(\sqrt{6}+\sqrt{2}\right)^{2}.
\frac{\frac{16+4\sqrt{3}}{2^{2}}-\left(\sqrt{3}\right)^{2}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
Do the calculations in 8+\left(\sqrt{6}\right)^{2}+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^{2}.
\frac{\frac{16+4\sqrt{3}}{2^{2}}-3}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
The square of \sqrt{3} is 3.
\frac{\frac{16+4\sqrt{3}}{2^{2}}-\frac{3\times 2^{2}}{2^{2}}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2^{2}}{2^{2}}.
\frac{\frac{16+4\sqrt{3}-3\times 2^{2}}{2^{2}}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
Since \frac{16+4\sqrt{3}}{2^{2}} and \frac{3\times 2^{2}}{2^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{16+4\sqrt{3}-12}{2^{2}}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
Do the multiplications in 16+4\sqrt{3}-3\times 2^{2}.
\frac{\frac{4+4\sqrt{3}}{2^{2}}}{2\sqrt{2}\times \frac{\sqrt{6}+\sqrt{2}}{2}}
Do the calculations in 16+4\sqrt{3}-12.
\frac{\frac{4+4\sqrt{3}}{2^{2}}}{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2}}
Cancel out 2 and 2.
\frac{\frac{4+4\sqrt{3}}{2^{2}}\sqrt{2}}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\frac{4+4\sqrt{3}}{2^{2}}}{\left(\sqrt{6}+\sqrt{2}\right)\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{4+4\sqrt{3}}{2^{2}}\sqrt{2}}{\left(\sqrt{6}+\sqrt{2}\right)\times 2}
The square of \sqrt{2} is 2.
\frac{\frac{4+4\sqrt{3}}{4}\sqrt{2}}{\left(\sqrt{6}+\sqrt{2}\right)\times 2}
Calculate 2 to the power of 2 and get 4.
\frac{\left(1+\sqrt{3}\right)\sqrt{2}}{\left(\sqrt{6}+\sqrt{2}\right)\times 2}
Divide each term of 4+4\sqrt{3} by 4 to get 1+\sqrt{3}.
\frac{\sqrt{2}+\sqrt{3}\sqrt{2}}{\left(\sqrt{6}+\sqrt{2}\right)\times 2}
Use the distributive property to multiply 1+\sqrt{3} by \sqrt{2}.
\frac{\sqrt{2}+\sqrt{6}}{\left(\sqrt{6}+\sqrt{2}\right)\times 2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{\sqrt{2}+\sqrt{6}}{2\sqrt{6}+2\sqrt{2}}
Use the distributive property to multiply \sqrt{6}+\sqrt{2} by 2.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{\left(2\sqrt{6}+2\sqrt{2}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{2}+\sqrt{6}}{2\sqrt{6}+2\sqrt{2}} by multiplying numerator and denominator by 2\sqrt{6}-2\sqrt{2}.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{\left(2\sqrt{6}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Consider \left(2\sqrt{6}+2\sqrt{2}\right)\left(2\sqrt{6}-2\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{2^{2}\left(\sqrt{6}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Expand \left(2\sqrt{6}\right)^{2}.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{4\left(\sqrt{6}\right)^{2}-\left(2\sqrt{2}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{4\times 6-\left(2\sqrt{2}\right)^{2}}
The square of \sqrt{6} is 6.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{24-\left(2\sqrt{2}\right)^{2}}
Multiply 4 and 6 to get 24.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{24-2^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(2\sqrt{2}\right)^{2}.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{24-4\left(\sqrt{2}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{24-4\times 2}
The square of \sqrt{2} is 2.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{24-8}
Multiply 4 and 2 to get 8.
\frac{\left(\sqrt{2}+\sqrt{6}\right)\left(2\sqrt{6}-2\sqrt{2}\right)}{16}
Subtract 8 from 24 to get 16.
\frac{-2\left(\sqrt{2}\right)^{2}+2\left(\sqrt{6}\right)^{2}}{16}
Use the distributive property to multiply \sqrt{2}+\sqrt{6} by 2\sqrt{6}-2\sqrt{2} and combine like terms.
\frac{-2\times 2+2\left(\sqrt{6}\right)^{2}}{16}
The square of \sqrt{2} is 2.
\frac{-4+2\left(\sqrt{6}\right)^{2}}{16}
Multiply -2 and 2 to get -4.
\frac{-4+2\times 6}{16}
The square of \sqrt{6} is 6.
\frac{-4+12}{16}
Multiply 2 and 6 to get 12.
\frac{8}{16}
Add -4 and 12 to get 8.
\frac{1}{2}
Reduce the fraction \frac{8}{16} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}