Evaluate
\frac{3}{5}=0.6
Factor
\frac{3}{5} = 0.6
Share
Copied to clipboard
\frac{\frac{25}{4}+\left(\frac{3}{2}\right)^{2}-4}{\frac{15}{2}}
Calculate \frac{5}{2} to the power of 2 and get \frac{25}{4}.
\frac{\frac{25}{4}+\frac{9}{4}-4}{\frac{15}{2}}
Calculate \frac{3}{2} to the power of 2 and get \frac{9}{4}.
\frac{\frac{25+9}{4}-4}{\frac{15}{2}}
Since \frac{25}{4} and \frac{9}{4} have the same denominator, add them by adding their numerators.
\frac{\frac{34}{4}-4}{\frac{15}{2}}
Add 25 and 9 to get 34.
\frac{\frac{17}{2}-4}{\frac{15}{2}}
Reduce the fraction \frac{34}{4} to lowest terms by extracting and canceling out 2.
\frac{\frac{17}{2}-\frac{8}{2}}{\frac{15}{2}}
Convert 4 to fraction \frac{8}{2}.
\frac{\frac{17-8}{2}}{\frac{15}{2}}
Since \frac{17}{2} and \frac{8}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{9}{2}}{\frac{15}{2}}
Subtract 8 from 17 to get 9.
\frac{9}{2}\times \frac{2}{15}
Divide \frac{9}{2} by \frac{15}{2} by multiplying \frac{9}{2} by the reciprocal of \frac{15}{2}.
\frac{9\times 2}{2\times 15}
Multiply \frac{9}{2} times \frac{2}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{9}{15}
Cancel out 2 in both numerator and denominator.
\frac{3}{5}
Reduce the fraction \frac{9}{15} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}