Evaluate
\frac{16x^{6}y^{11}}{243}
Expand
\frac{16x^{6}y^{11}}{243}
Share
Copied to clipboard
\frac{\frac{\left(2x^{4}\right)^{4}}{y^{4}}}{\left(\frac{3x^{2}}{y^{3}}\right)^{5}}
To raise \frac{2x^{4}}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(2x^{4}\right)^{4}}{y^{4}}}{\frac{\left(3x^{2}\right)^{5}}{\left(y^{3}\right)^{5}}}
To raise \frac{3x^{2}}{y^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2x^{4}\right)^{4}\left(y^{3}\right)^{5}}{y^{4}\times \left(3x^{2}\right)^{5}}
Divide \frac{\left(2x^{4}\right)^{4}}{y^{4}} by \frac{\left(3x^{2}\right)^{5}}{\left(y^{3}\right)^{5}} by multiplying \frac{\left(2x^{4}\right)^{4}}{y^{4}} by the reciprocal of \frac{\left(3x^{2}\right)^{5}}{\left(y^{3}\right)^{5}}.
\frac{\left(2x^{4}\right)^{4}y^{15}}{y^{4}\times \left(3x^{2}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
\frac{2^{4}\left(x^{4}\right)^{4}y^{15}}{y^{4}\times \left(3x^{2}\right)^{5}}
Expand \left(2x^{4}\right)^{4}.
\frac{2^{4}x^{16}y^{15}}{y^{4}\times \left(3x^{2}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 4 and 4 to get 16.
\frac{16x^{16}y^{15}}{y^{4}\times \left(3x^{2}\right)^{5}}
Calculate 2 to the power of 4 and get 16.
\frac{16x^{16}y^{15}}{y^{4}\times 3^{5}\left(x^{2}\right)^{5}}
Expand \left(3x^{2}\right)^{5}.
\frac{16x^{16}y^{15}}{y^{4}\times 3^{5}x^{10}}
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
\frac{16x^{16}y^{15}}{y^{4}\times 243x^{10}}
Calculate 3 to the power of 5 and get 243.
\frac{16x^{6}y^{11}}{243}
Cancel out y^{4}x^{10} in both numerator and denominator.
\frac{\frac{\left(2x^{4}\right)^{4}}{y^{4}}}{\left(\frac{3x^{2}}{y^{3}}\right)^{5}}
To raise \frac{2x^{4}}{y} to a power, raise both numerator and denominator to the power and then divide.
\frac{\frac{\left(2x^{4}\right)^{4}}{y^{4}}}{\frac{\left(3x^{2}\right)^{5}}{\left(y^{3}\right)^{5}}}
To raise \frac{3x^{2}}{y^{3}} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2x^{4}\right)^{4}\left(y^{3}\right)^{5}}{y^{4}\times \left(3x^{2}\right)^{5}}
Divide \frac{\left(2x^{4}\right)^{4}}{y^{4}} by \frac{\left(3x^{2}\right)^{5}}{\left(y^{3}\right)^{5}} by multiplying \frac{\left(2x^{4}\right)^{4}}{y^{4}} by the reciprocal of \frac{\left(3x^{2}\right)^{5}}{\left(y^{3}\right)^{5}}.
\frac{\left(2x^{4}\right)^{4}y^{15}}{y^{4}\times \left(3x^{2}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 3 and 5 to get 15.
\frac{2^{4}\left(x^{4}\right)^{4}y^{15}}{y^{4}\times \left(3x^{2}\right)^{5}}
Expand \left(2x^{4}\right)^{4}.
\frac{2^{4}x^{16}y^{15}}{y^{4}\times \left(3x^{2}\right)^{5}}
To raise a power to another power, multiply the exponents. Multiply 4 and 4 to get 16.
\frac{16x^{16}y^{15}}{y^{4}\times \left(3x^{2}\right)^{5}}
Calculate 2 to the power of 4 and get 16.
\frac{16x^{16}y^{15}}{y^{4}\times 3^{5}\left(x^{2}\right)^{5}}
Expand \left(3x^{2}\right)^{5}.
\frac{16x^{16}y^{15}}{y^{4}\times 3^{5}x^{10}}
To raise a power to another power, multiply the exponents. Multiply 2 and 5 to get 10.
\frac{16x^{16}y^{15}}{y^{4}\times 243x^{10}}
Calculate 3 to the power of 5 and get 243.
\frac{16x^{6}y^{11}}{243}
Cancel out y^{4}x^{10} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}