Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{1}{6}\right)^{2}x^{2}\left(y^{3}\right)^{2}\left(-\frac{2}{3}x^{2}y\right)^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
Expand \left(\frac{1}{6}xy^{3}\right)^{2}.
\frac{\left(\frac{1}{6}\right)^{2}x^{2}y^{6}\left(-\frac{2}{3}x^{2}y\right)^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\frac{1}{36}x^{2}y^{6}\left(-\frac{2}{3}x^{2}y\right)^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
Calculate \frac{1}{6} to the power of 2 and get \frac{1}{36}.
\frac{\frac{1}{36}x^{2}y^{6}\left(-\frac{2}{3}\right)^{2}\left(x^{2}\right)^{2}y^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
Expand \left(-\frac{2}{3}x^{2}y\right)^{2}.
\frac{\frac{1}{36}x^{2}y^{6}\left(-\frac{2}{3}\right)^{2}x^{4}y^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{1}{36}x^{2}y^{6}\times \frac{4}{9}x^{4}y^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
Calculate -\frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{\frac{1}{81}x^{2}y^{6}x^{4}y^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
Multiply \frac{1}{36} and \frac{4}{9} to get \frac{1}{81}.
\frac{\frac{1}{81}x^{6}y^{6}y^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
\frac{\frac{1}{81}x^{6}y^{8}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
To multiply powers of the same base, add their exponents. Add 6 and 2 to get 8.
\frac{\frac{1}{81}x^{6}y^{8}}{\left(-\frac{1}{3}\right)^{3}\left(x^{2}\right)^{3}\left(y^{2}\right)^{3}}
Expand \left(-\frac{1}{3}x^{2}y^{2}\right)^{3}.
\frac{\frac{1}{81}x^{6}y^{8}}{\left(-\frac{1}{3}\right)^{3}x^{6}\left(y^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{1}{81}x^{6}y^{8}}{\left(-\frac{1}{3}\right)^{3}x^{6}y^{6}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{1}{81}x^{6}y^{8}}{-\frac{1}{27}x^{6}y^{6}}
Calculate -\frac{1}{3} to the power of 3 and get -\frac{1}{27}.
\frac{\frac{1}{81}y^{2}}{-\frac{1}{27}}
Cancel out x^{6}y^{6} in both numerator and denominator.
\frac{\frac{1}{81}y^{2}\times 27}{-1}
Divide \frac{1}{81}y^{2} by -\frac{1}{27} by multiplying \frac{1}{81}y^{2} by the reciprocal of -\frac{1}{27}.
\frac{\frac{1}{3}y^{2}}{-1}
Multiply \frac{1}{81} and 27 to get \frac{1}{3}.
-\frac{1}{3}y^{2}
Anything divided by -1 gives its opposite.
\frac{\left(\frac{1}{6}\right)^{2}x^{2}\left(y^{3}\right)^{2}\left(-\frac{2}{3}x^{2}y\right)^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
Expand \left(\frac{1}{6}xy^{3}\right)^{2}.
\frac{\left(\frac{1}{6}\right)^{2}x^{2}y^{6}\left(-\frac{2}{3}x^{2}y\right)^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\frac{1}{36}x^{2}y^{6}\left(-\frac{2}{3}x^{2}y\right)^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
Calculate \frac{1}{6} to the power of 2 and get \frac{1}{36}.
\frac{\frac{1}{36}x^{2}y^{6}\left(-\frac{2}{3}\right)^{2}\left(x^{2}\right)^{2}y^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
Expand \left(-\frac{2}{3}x^{2}y\right)^{2}.
\frac{\frac{1}{36}x^{2}y^{6}\left(-\frac{2}{3}\right)^{2}x^{4}y^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{1}{36}x^{2}y^{6}\times \frac{4}{9}x^{4}y^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
Calculate -\frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{\frac{1}{81}x^{2}y^{6}x^{4}y^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
Multiply \frac{1}{36} and \frac{4}{9} to get \frac{1}{81}.
\frac{\frac{1}{81}x^{6}y^{6}y^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
\frac{\frac{1}{81}x^{6}y^{8}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
To multiply powers of the same base, add their exponents. Add 6 and 2 to get 8.
\frac{\frac{1}{81}x^{6}y^{8}}{\left(-\frac{1}{3}\right)^{3}\left(x^{2}\right)^{3}\left(y^{2}\right)^{3}}
Expand \left(-\frac{1}{3}x^{2}y^{2}\right)^{3}.
\frac{\frac{1}{81}x^{6}y^{8}}{\left(-\frac{1}{3}\right)^{3}x^{6}\left(y^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{1}{81}x^{6}y^{8}}{\left(-\frac{1}{3}\right)^{3}x^{6}y^{6}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{1}{81}x^{6}y^{8}}{-\frac{1}{27}x^{6}y^{6}}
Calculate -\frac{1}{3} to the power of 3 and get -\frac{1}{27}.
\frac{\frac{1}{81}y^{2}}{-\frac{1}{27}}
Cancel out x^{6}y^{6} in both numerator and denominator.
\frac{\frac{1}{81}y^{2}\times 27}{-1}
Divide \frac{1}{81}y^{2} by -\frac{1}{27} by multiplying \frac{1}{81}y^{2} by the reciprocal of -\frac{1}{27}.
\frac{\frac{1}{3}y^{2}}{-1}
Multiply \frac{1}{81} and 27 to get \frac{1}{3}.
-\frac{1}{3}y^{2}
Anything divided by -1 gives its opposite.