Evaluate
-\frac{y^{2}}{3}
Expand
-\frac{y^{2}}{3}
Share
Copied to clipboard
\frac{\left(\frac{1}{6}\right)^{2}x^{2}\left(y^{3}\right)^{2}\left(-\frac{2}{3}x^{2}y\right)^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
Expand \left(\frac{1}{6}xy^{3}\right)^{2}.
\frac{\left(\frac{1}{6}\right)^{2}x^{2}y^{6}\left(-\frac{2}{3}x^{2}y\right)^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\frac{1}{36}x^{2}y^{6}\left(-\frac{2}{3}x^{2}y\right)^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
Calculate \frac{1}{6} to the power of 2 and get \frac{1}{36}.
\frac{\frac{1}{36}x^{2}y^{6}\left(-\frac{2}{3}\right)^{2}\left(x^{2}\right)^{2}y^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
Expand \left(-\frac{2}{3}x^{2}y\right)^{2}.
\frac{\frac{1}{36}x^{2}y^{6}\left(-\frac{2}{3}\right)^{2}x^{4}y^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{1}{36}x^{2}y^{6}\times \frac{4}{9}x^{4}y^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
Calculate -\frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{\frac{1}{81}x^{2}y^{6}x^{4}y^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
Multiply \frac{1}{36} and \frac{4}{9} to get \frac{1}{81}.
\frac{\frac{1}{81}x^{6}y^{6}y^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
\frac{\frac{1}{81}x^{6}y^{8}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
To multiply powers of the same base, add their exponents. Add 6 and 2 to get 8.
\frac{\frac{1}{81}x^{6}y^{8}}{\left(-\frac{1}{3}\right)^{3}\left(x^{2}\right)^{3}\left(y^{2}\right)^{3}}
Expand \left(-\frac{1}{3}x^{2}y^{2}\right)^{3}.
\frac{\frac{1}{81}x^{6}y^{8}}{\left(-\frac{1}{3}\right)^{3}x^{6}\left(y^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{1}{81}x^{6}y^{8}}{\left(-\frac{1}{3}\right)^{3}x^{6}y^{6}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{1}{81}x^{6}y^{8}}{-\frac{1}{27}x^{6}y^{6}}
Calculate -\frac{1}{3} to the power of 3 and get -\frac{1}{27}.
\frac{\frac{1}{81}y^{2}}{-\frac{1}{27}}
Cancel out x^{6}y^{6} in both numerator and denominator.
\frac{\frac{1}{81}y^{2}\times 27}{-1}
Divide \frac{1}{81}y^{2} by -\frac{1}{27} by multiplying \frac{1}{81}y^{2} by the reciprocal of -\frac{1}{27}.
\frac{\frac{1}{3}y^{2}}{-1}
Multiply \frac{1}{81} and 27 to get \frac{1}{3}.
-\frac{1}{3}y^{2}
Anything divided by -1 gives its opposite.
\frac{\left(\frac{1}{6}\right)^{2}x^{2}\left(y^{3}\right)^{2}\left(-\frac{2}{3}x^{2}y\right)^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
Expand \left(\frac{1}{6}xy^{3}\right)^{2}.
\frac{\left(\frac{1}{6}\right)^{2}x^{2}y^{6}\left(-\frac{2}{3}x^{2}y\right)^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\frac{1}{36}x^{2}y^{6}\left(-\frac{2}{3}x^{2}y\right)^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
Calculate \frac{1}{6} to the power of 2 and get \frac{1}{36}.
\frac{\frac{1}{36}x^{2}y^{6}\left(-\frac{2}{3}\right)^{2}\left(x^{2}\right)^{2}y^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
Expand \left(-\frac{2}{3}x^{2}y\right)^{2}.
\frac{\frac{1}{36}x^{2}y^{6}\left(-\frac{2}{3}\right)^{2}x^{4}y^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{\frac{1}{36}x^{2}y^{6}\times \frac{4}{9}x^{4}y^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
Calculate -\frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{\frac{1}{81}x^{2}y^{6}x^{4}y^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
Multiply \frac{1}{36} and \frac{4}{9} to get \frac{1}{81}.
\frac{\frac{1}{81}x^{6}y^{6}y^{2}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
\frac{\frac{1}{81}x^{6}y^{8}}{\left(-\frac{1}{3}x^{2}y^{2}\right)^{3}}
To multiply powers of the same base, add their exponents. Add 6 and 2 to get 8.
\frac{\frac{1}{81}x^{6}y^{8}}{\left(-\frac{1}{3}\right)^{3}\left(x^{2}\right)^{3}\left(y^{2}\right)^{3}}
Expand \left(-\frac{1}{3}x^{2}y^{2}\right)^{3}.
\frac{\frac{1}{81}x^{6}y^{8}}{\left(-\frac{1}{3}\right)^{3}x^{6}\left(y^{2}\right)^{3}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{1}{81}x^{6}y^{8}}{\left(-\frac{1}{3}\right)^{3}x^{6}y^{6}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{1}{81}x^{6}y^{8}}{-\frac{1}{27}x^{6}y^{6}}
Calculate -\frac{1}{3} to the power of 3 and get -\frac{1}{27}.
\frac{\frac{1}{81}y^{2}}{-\frac{1}{27}}
Cancel out x^{6}y^{6} in both numerator and denominator.
\frac{\frac{1}{81}y^{2}\times 27}{-1}
Divide \frac{1}{81}y^{2} by -\frac{1}{27} by multiplying \frac{1}{81}y^{2} by the reciprocal of -\frac{1}{27}.
\frac{\frac{1}{3}y^{2}}{-1}
Multiply \frac{1}{81} and 27 to get \frac{1}{3}.
-\frac{1}{3}y^{2}
Anything divided by -1 gives its opposite.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}