Evaluate
\frac{3179}{288}\approx 11.038194444
Factor
\frac{11 \cdot 17 ^ {2}}{2 ^ {5} \cdot 3 ^ {2}} = 11\frac{11}{288} = 11.038194444444445
Share
Copied to clipboard
\frac{\frac{1}{4}-2\times \left(\frac{2}{3}\right)^{2}}{\frac{1}{4}}+\frac{\left(\frac{1}{4}\right)^{2}+3^{2}}{\frac{2}{3}}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\frac{1}{4}-2\times \frac{4}{9}}{\frac{1}{4}}+\frac{\left(\frac{1}{4}\right)^{2}+3^{2}}{\frac{2}{3}}
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{\frac{1}{4}-\frac{2\times 4}{9}}{\frac{1}{4}}+\frac{\left(\frac{1}{4}\right)^{2}+3^{2}}{\frac{2}{3}}
Express 2\times \frac{4}{9} as a single fraction.
\frac{\frac{1}{4}-\frac{8}{9}}{\frac{1}{4}}+\frac{\left(\frac{1}{4}\right)^{2}+3^{2}}{\frac{2}{3}}
Multiply 2 and 4 to get 8.
\frac{\frac{9}{36}-\frac{32}{36}}{\frac{1}{4}}+\frac{\left(\frac{1}{4}\right)^{2}+3^{2}}{\frac{2}{3}}
Least common multiple of 4 and 9 is 36. Convert \frac{1}{4} and \frac{8}{9} to fractions with denominator 36.
\frac{\frac{9-32}{36}}{\frac{1}{4}}+\frac{\left(\frac{1}{4}\right)^{2}+3^{2}}{\frac{2}{3}}
Since \frac{9}{36} and \frac{32}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{23}{36}}{\frac{1}{4}}+\frac{\left(\frac{1}{4}\right)^{2}+3^{2}}{\frac{2}{3}}
Subtract 32 from 9 to get -23.
-\frac{23}{36}\times 4+\frac{\left(\frac{1}{4}\right)^{2}+3^{2}}{\frac{2}{3}}
Divide -\frac{23}{36} by \frac{1}{4} by multiplying -\frac{23}{36} by the reciprocal of \frac{1}{4}.
\frac{-23\times 4}{36}+\frac{\left(\frac{1}{4}\right)^{2}+3^{2}}{\frac{2}{3}}
Express -\frac{23}{36}\times 4 as a single fraction.
\frac{-92}{36}+\frac{\left(\frac{1}{4}\right)^{2}+3^{2}}{\frac{2}{3}}
Multiply -23 and 4 to get -92.
-\frac{23}{9}+\frac{\left(\frac{1}{4}\right)^{2}+3^{2}}{\frac{2}{3}}
Reduce the fraction \frac{-92}{36} to lowest terms by extracting and canceling out 4.
-\frac{23}{9}+\frac{\frac{1}{16}+3^{2}}{\frac{2}{3}}
Calculate \frac{1}{4} to the power of 2 and get \frac{1}{16}.
-\frac{23}{9}+\frac{\frac{1}{16}+9}{\frac{2}{3}}
Calculate 3 to the power of 2 and get 9.
-\frac{23}{9}+\frac{\frac{1}{16}+\frac{144}{16}}{\frac{2}{3}}
Convert 9 to fraction \frac{144}{16}.
-\frac{23}{9}+\frac{\frac{1+144}{16}}{\frac{2}{3}}
Since \frac{1}{16} and \frac{144}{16} have the same denominator, add them by adding their numerators.
-\frac{23}{9}+\frac{\frac{145}{16}}{\frac{2}{3}}
Add 1 and 144 to get 145.
-\frac{23}{9}+\frac{145}{16}\times \frac{3}{2}
Divide \frac{145}{16} by \frac{2}{3} by multiplying \frac{145}{16} by the reciprocal of \frac{2}{3}.
-\frac{23}{9}+\frac{145\times 3}{16\times 2}
Multiply \frac{145}{16} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{23}{9}+\frac{435}{32}
Do the multiplications in the fraction \frac{145\times 3}{16\times 2}.
-\frac{736}{288}+\frac{3915}{288}
Least common multiple of 9 and 32 is 288. Convert -\frac{23}{9} and \frac{435}{32} to fractions with denominator 288.
\frac{-736+3915}{288}
Since -\frac{736}{288} and \frac{3915}{288} have the same denominator, add them by adding their numerators.
\frac{3179}{288}
Add -736 and 3915 to get 3179.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}