Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{2}+5}{\sqrt{26}-13}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\left(2\sqrt{2}+5\right)\left(\sqrt{26}+13\right)}{\left(\sqrt{26}-13\right)\left(\sqrt{26}+13\right)}
Rationalize the denominator of \frac{2\sqrt{2}+5}{\sqrt{26}-13} by multiplying numerator and denominator by \sqrt{26}+13.
\frac{\left(2\sqrt{2}+5\right)\left(\sqrt{26}+13\right)}{\left(\sqrt{26}\right)^{2}-13^{2}}
Consider \left(\sqrt{26}-13\right)\left(\sqrt{26}+13\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{2}+5\right)\left(\sqrt{26}+13\right)}{26-169}
Square \sqrt{26}. Square 13.
\frac{\left(2\sqrt{2}+5\right)\left(\sqrt{26}+13\right)}{-143}
Subtract 169 from 26 to get -143.
\frac{2\sqrt{2}\sqrt{26}+26\sqrt{2}+5\sqrt{26}+65}{-143}
Apply the distributive property by multiplying each term of 2\sqrt{2}+5 by each term of \sqrt{26}+13.
\frac{2\sqrt{2}\sqrt{2}\sqrt{13}+26\sqrt{2}+5\sqrt{26}+65}{-143}
Factor 26=2\times 13. Rewrite the square root of the product \sqrt{2\times 13} as the product of square roots \sqrt{2}\sqrt{13}.
\frac{2\times 2\sqrt{13}+26\sqrt{2}+5\sqrt{26}+65}{-143}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{4\sqrt{13}+26\sqrt{2}+5\sqrt{26}+65}{-143}
Multiply 2 and 2 to get 4.
\frac{-4\sqrt{13}-26\sqrt{2}-5\sqrt{26}-65}{143}
Multiply both numerator and denominator by -1.