Evaluate
\frac{2\sqrt{2}}{11}-\frac{4\sqrt{13}}{143}-\frac{5\sqrt{26}}{143}+\frac{5}{11}\approx 0.432533216
Share
Copied to clipboard
\frac{2\sqrt{2}+5}{\sqrt{26}+13}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\left(2\sqrt{2}+5\right)\left(\sqrt{26}-13\right)}{\left(\sqrt{26}+13\right)\left(\sqrt{26}-13\right)}
Rationalize the denominator of \frac{2\sqrt{2}+5}{\sqrt{26}+13} by multiplying numerator and denominator by \sqrt{26}-13.
\frac{\left(2\sqrt{2}+5\right)\left(\sqrt{26}-13\right)}{\left(\sqrt{26}\right)^{2}-13^{2}}
Consider \left(\sqrt{26}+13\right)\left(\sqrt{26}-13\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2\sqrt{2}+5\right)\left(\sqrt{26}-13\right)}{26-169}
Square \sqrt{26}. Square 13.
\frac{\left(2\sqrt{2}+5\right)\left(\sqrt{26}-13\right)}{-143}
Subtract 169 from 26 to get -143.
\frac{2\sqrt{2}\sqrt{26}-26\sqrt{2}+5\sqrt{26}-65}{-143}
Apply the distributive property by multiplying each term of 2\sqrt{2}+5 by each term of \sqrt{26}-13.
\frac{2\sqrt{2}\sqrt{2}\sqrt{13}-26\sqrt{2}+5\sqrt{26}-65}{-143}
Factor 26=2\times 13. Rewrite the square root of the product \sqrt{2\times 13} as the product of square roots \sqrt{2}\sqrt{13}.
\frac{2\times 2\sqrt{13}-26\sqrt{2}+5\sqrt{26}-65}{-143}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{4\sqrt{13}-26\sqrt{2}+5\sqrt{26}-65}{-143}
Multiply 2 and 2 to get 4.
\frac{-4\sqrt{13}+26\sqrt{2}-5\sqrt{26}+65}{143}
Multiply both numerator and denominator by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}