Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{2\sqrt{2}}{9801}\times \frac{4!\left(1103+26390\right)}{396^{4}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{2\sqrt{2}}{9801}\times \frac{24\left(1103+26390\right)}{396^{4}}
The factorial of 4 is 24.
\frac{2\sqrt{2}}{9801}\times \frac{24\times 27493}{396^{4}}
Add 1103 and 26390 to get 27493.
\frac{2\sqrt{2}}{9801}\times \frac{659832}{396^{4}}
Multiply 24 and 27493 to get 659832.
\frac{2\sqrt{2}}{9801}\times \frac{659832}{24591257856}
Calculate 396 to the power of 4 and get 24591257856.
\frac{2\sqrt{2}}{9801}\times \frac{27493}{1024635744}
Reduce the fraction \frac{659832}{24591257856} to lowest terms by extracting and canceling out 24.
\frac{2\sqrt{2}\times 27493}{9801\times 1024635744}
Multiply \frac{2\sqrt{2}}{9801} times \frac{27493}{1024635744} by multiplying numerator times numerator and denominator times denominator.
\frac{27493\sqrt{2}}{9801\times 512317872}
Cancel out 2 in both numerator and denominator.
\frac{27493\sqrt{2}}{5021227463472}
Multiply 9801 and 512317872 to get 5021227463472.