Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{7}+3\sqrt{11}}{5\sqrt{7}+4\sqrt{11}}\times 1
Divide 5\sqrt{7}-4\sqrt{11} by 5\sqrt{7}-4\sqrt{11} to get 1.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{\left(5\sqrt{7}+4\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}\times 1
Rationalize the denominator of \frac{\sqrt{7}+3\sqrt{11}}{5\sqrt{7}+4\sqrt{11}} by multiplying numerator and denominator by 5\sqrt{7}-4\sqrt{11}.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{\left(5\sqrt{7}\right)^{2}-\left(4\sqrt{11}\right)^{2}}\times 1
Consider \left(5\sqrt{7}+4\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{5^{2}\left(\sqrt{7}\right)^{2}-\left(4\sqrt{11}\right)^{2}}\times 1
Expand \left(5\sqrt{7}\right)^{2}.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{25\left(\sqrt{7}\right)^{2}-\left(4\sqrt{11}\right)^{2}}\times 1
Calculate 5 to the power of 2 and get 25.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{25\times 7-\left(4\sqrt{11}\right)^{2}}\times 1
The square of \sqrt{7} is 7.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{175-\left(4\sqrt{11}\right)^{2}}\times 1
Multiply 25 and 7 to get 175.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{175-4^{2}\left(\sqrt{11}\right)^{2}}\times 1
Expand \left(4\sqrt{11}\right)^{2}.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{175-16\left(\sqrt{11}\right)^{2}}\times 1
Calculate 4 to the power of 2 and get 16.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{175-16\times 11}\times 1
The square of \sqrt{11} is 11.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{175-176}\times 1
Multiply 16 and 11 to get 176.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{-1}\times 1
Subtract 176 from 175 to get -1.
\left(-\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)\right)\times 1
Anything divided by -1 gives its opposite.
\left(-\left(5\left(\sqrt{7}\right)^{2}-4\sqrt{7}\sqrt{11}+15\sqrt{11}\sqrt{7}-12\left(\sqrt{11}\right)^{2}\right)\right)\times 1
Apply the distributive property by multiplying each term of \sqrt{7}+3\sqrt{11} by each term of 5\sqrt{7}-4\sqrt{11}.
\left(-\left(5\times 7-4\sqrt{7}\sqrt{11}+15\sqrt{11}\sqrt{7}-12\left(\sqrt{11}\right)^{2}\right)\right)\times 1
The square of \sqrt{7} is 7.
\left(-\left(35-4\sqrt{7}\sqrt{11}+15\sqrt{11}\sqrt{7}-12\left(\sqrt{11}\right)^{2}\right)\right)\times 1
Multiply 5 and 7 to get 35.
\left(-\left(35-4\sqrt{77}+15\sqrt{11}\sqrt{7}-12\left(\sqrt{11}\right)^{2}\right)\right)\times 1
To multiply \sqrt{7} and \sqrt{11}, multiply the numbers under the square root.
\left(-\left(35-4\sqrt{77}+15\sqrt{77}-12\left(\sqrt{11}\right)^{2}\right)\right)\times 1
To multiply \sqrt{11} and \sqrt{7}, multiply the numbers under the square root.
\left(-\left(35+11\sqrt{77}-12\left(\sqrt{11}\right)^{2}\right)\right)\times 1
Combine -4\sqrt{77} and 15\sqrt{77} to get 11\sqrt{77}.
\left(-\left(35+11\sqrt{77}-12\times 11\right)\right)\times 1
The square of \sqrt{11} is 11.
\left(-\left(35+11\sqrt{77}-132\right)\right)\times 1
Multiply -12 and 11 to get -132.
\left(-\left(-97+11\sqrt{77}\right)\right)\times 1
Subtract 132 from 35 to get -97.
\left(-\left(-97\right)-11\sqrt{77}\right)\times 1
To find the opposite of -97+11\sqrt{77}, find the opposite of each term.
\left(97-11\sqrt{77}\right)\times 1
The opposite of -97 is 97.
97-11\sqrt{77}
Use the distributive property to multiply 97-11\sqrt{77} by 1.