Evaluate
97-11\sqrt{77}\approx 0.475391739
Share
Copied to clipboard
\frac{\sqrt{7}+3\sqrt{11}}{5\sqrt{7}+4\sqrt{11}}\times 1
Divide 5\sqrt{7}-4\sqrt{11} by 5\sqrt{7}-4\sqrt{11} to get 1.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{\left(5\sqrt{7}+4\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}\times 1
Rationalize the denominator of \frac{\sqrt{7}+3\sqrt{11}}{5\sqrt{7}+4\sqrt{11}} by multiplying numerator and denominator by 5\sqrt{7}-4\sqrt{11}.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{\left(5\sqrt{7}\right)^{2}-\left(4\sqrt{11}\right)^{2}}\times 1
Consider \left(5\sqrt{7}+4\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{5^{2}\left(\sqrt{7}\right)^{2}-\left(4\sqrt{11}\right)^{2}}\times 1
Expand \left(5\sqrt{7}\right)^{2}.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{25\left(\sqrt{7}\right)^{2}-\left(4\sqrt{11}\right)^{2}}\times 1
Calculate 5 to the power of 2 and get 25.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{25\times 7-\left(4\sqrt{11}\right)^{2}}\times 1
The square of \sqrt{7} is 7.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{175-\left(4\sqrt{11}\right)^{2}}\times 1
Multiply 25 and 7 to get 175.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{175-4^{2}\left(\sqrt{11}\right)^{2}}\times 1
Expand \left(4\sqrt{11}\right)^{2}.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{175-16\left(\sqrt{11}\right)^{2}}\times 1
Calculate 4 to the power of 2 and get 16.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{175-16\times 11}\times 1
The square of \sqrt{11} is 11.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{175-176}\times 1
Multiply 16 and 11 to get 176.
\frac{\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)}{-1}\times 1
Subtract 176 from 175 to get -1.
\left(-\left(\sqrt{7}+3\sqrt{11}\right)\left(5\sqrt{7}-4\sqrt{11}\right)\right)\times 1
Anything divided by -1 gives its opposite.
\left(-\left(5\left(\sqrt{7}\right)^{2}-4\sqrt{7}\sqrt{11}+15\sqrt{11}\sqrt{7}-12\left(\sqrt{11}\right)^{2}\right)\right)\times 1
Apply the distributive property by multiplying each term of \sqrt{7}+3\sqrt{11} by each term of 5\sqrt{7}-4\sqrt{11}.
\left(-\left(5\times 7-4\sqrt{7}\sqrt{11}+15\sqrt{11}\sqrt{7}-12\left(\sqrt{11}\right)^{2}\right)\right)\times 1
The square of \sqrt{7} is 7.
\left(-\left(35-4\sqrt{7}\sqrt{11}+15\sqrt{11}\sqrt{7}-12\left(\sqrt{11}\right)^{2}\right)\right)\times 1
Multiply 5 and 7 to get 35.
\left(-\left(35-4\sqrt{77}+15\sqrt{11}\sqrt{7}-12\left(\sqrt{11}\right)^{2}\right)\right)\times 1
To multiply \sqrt{7} and \sqrt{11}, multiply the numbers under the square root.
\left(-\left(35-4\sqrt{77}+15\sqrt{77}-12\left(\sqrt{11}\right)^{2}\right)\right)\times 1
To multiply \sqrt{11} and \sqrt{7}, multiply the numbers under the square root.
\left(-\left(35+11\sqrt{77}-12\left(\sqrt{11}\right)^{2}\right)\right)\times 1
Combine -4\sqrt{77} and 15\sqrt{77} to get 11\sqrt{77}.
\left(-\left(35+11\sqrt{77}-12\times 11\right)\right)\times 1
The square of \sqrt{11} is 11.
\left(-\left(35+11\sqrt{77}-132\right)\right)\times 1
Multiply -12 and 11 to get -132.
\left(-\left(-97+11\sqrt{77}\right)\right)\times 1
Subtract 132 from 35 to get -97.
\left(-\left(-97\right)-11\sqrt{77}\right)\times 1
To find the opposite of -97+11\sqrt{77}, find the opposite of each term.
\left(97-11\sqrt{77}\right)\times 1
The opposite of -97 is 97.
97-11\sqrt{77}
Use the distributive property to multiply 97-11\sqrt{77} by 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}