Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{6}-\sqrt{2}\right)\times 4}{4\left(\sqrt{6}+\sqrt{2}\right)}
Divide \frac{\sqrt{6}-\sqrt{2}}{4} by \frac{\sqrt{6}+\sqrt{2}}{4} by multiplying \frac{\sqrt{6}-\sqrt{2}}{4} by the reciprocal of \frac{\sqrt{6}+\sqrt{2}}{4}.
\frac{\sqrt{6}-\sqrt{2}}{\sqrt{2}+\sqrt{6}}
Cancel out 4 in both numerator and denominator.
\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right)}
Rationalize the denominator of \frac{\sqrt{6}-\sqrt{2}}{\sqrt{2}+\sqrt{6}} by multiplying numerator and denominator by \sqrt{2}-\sqrt{6}.
\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{2}-\sqrt{6}\right)}{\left(\sqrt{2}\right)^{2}-\left(\sqrt{6}\right)^{2}}
Consider \left(\sqrt{2}+\sqrt{6}\right)\left(\sqrt{2}-\sqrt{6}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{2}-\sqrt{6}\right)}{2-6}
Square \sqrt{2}. Square \sqrt{6}.
\frac{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{2}-\sqrt{6}\right)}{-4}
Subtract 6 from 2 to get -4.
\frac{\sqrt{6}\sqrt{2}-\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}+\sqrt{2}\sqrt{6}}{-4}
Apply the distributive property by multiplying each term of \sqrt{6}-\sqrt{2} by each term of \sqrt{2}-\sqrt{6}.
\frac{\sqrt{2}\sqrt{3}\sqrt{2}-\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}+\sqrt{2}\sqrt{6}}{-4}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{2\sqrt{3}-\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}+\sqrt{2}\sqrt{6}}{-4}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{2\sqrt{3}-6-\left(\sqrt{2}\right)^{2}+\sqrt{2}\sqrt{6}}{-4}
The square of \sqrt{6} is 6.
\frac{2\sqrt{3}-6-2+\sqrt{2}\sqrt{6}}{-4}
The square of \sqrt{2} is 2.
\frac{2\sqrt{3}-8+\sqrt{2}\sqrt{6}}{-4}
Subtract 2 from -6 to get -8.
\frac{2\sqrt{3}-8+\sqrt{2}\sqrt{2}\sqrt{3}}{-4}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{2\sqrt{3}-8+2\sqrt{3}}{-4}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{4\sqrt{3}-8}{-4}
Combine 2\sqrt{3} and 2\sqrt{3} to get 4\sqrt{3}.
-\sqrt{3}+2
Divide each term of 4\sqrt{3}-8 by -4 to get -\sqrt{3}+2.