Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{6}+2}{\sqrt{6}-\sqrt{4}}+\frac{\sqrt{6}-\sqrt{4}}{\sqrt{6}+\sqrt{4}}
Calculate the square root of 4 and get 2.
\frac{\sqrt{6}+2}{\sqrt{6}-2}+\frac{\sqrt{6}-\sqrt{4}}{\sqrt{6}+\sqrt{4}}
Calculate the square root of 4 and get 2.
\frac{\left(\sqrt{6}+2\right)\left(\sqrt{6}+2\right)}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}+\frac{\sqrt{6}-\sqrt{4}}{\sqrt{6}+\sqrt{4}}
Rationalize the denominator of \frac{\sqrt{6}+2}{\sqrt{6}-2} by multiplying numerator and denominator by \sqrt{6}+2.
\frac{\left(\sqrt{6}+2\right)\left(\sqrt{6}+2\right)}{\left(\sqrt{6}\right)^{2}-2^{2}}+\frac{\sqrt{6}-\sqrt{4}}{\sqrt{6}+\sqrt{4}}
Consider \left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{6}+2\right)\left(\sqrt{6}+2\right)}{6-4}+\frac{\sqrt{6}-\sqrt{4}}{\sqrt{6}+\sqrt{4}}
Square \sqrt{6}. Square 2.
\frac{\left(\sqrt{6}+2\right)\left(\sqrt{6}+2\right)}{2}+\frac{\sqrt{6}-\sqrt{4}}{\sqrt{6}+\sqrt{4}}
Subtract 4 from 6 to get 2.
\frac{\left(\sqrt{6}+2\right)^{2}}{2}+\frac{\sqrt{6}-\sqrt{4}}{\sqrt{6}+\sqrt{4}}
Multiply \sqrt{6}+2 and \sqrt{6}+2 to get \left(\sqrt{6}+2\right)^{2}.
\frac{\left(\sqrt{6}\right)^{2}+4\sqrt{6}+4}{2}+\frac{\sqrt{6}-\sqrt{4}}{\sqrt{6}+\sqrt{4}}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{6}+2\right)^{2}.
\frac{6+4\sqrt{6}+4}{2}+\frac{\sqrt{6}-\sqrt{4}}{\sqrt{6}+\sqrt{4}}
The square of \sqrt{6} is 6.
\frac{10+4\sqrt{6}}{2}+\frac{\sqrt{6}-\sqrt{4}}{\sqrt{6}+\sqrt{4}}
Add 6 and 4 to get 10.
5+2\sqrt{6}+\frac{\sqrt{6}-\sqrt{4}}{\sqrt{6}+\sqrt{4}}
Divide each term of 10+4\sqrt{6} by 2 to get 5+2\sqrt{6}.
5+2\sqrt{6}+\frac{\sqrt{6}-2}{\sqrt{6}+\sqrt{4}}
Calculate the square root of 4 and get 2.
5+2\sqrt{6}+\frac{\sqrt{6}-2}{\sqrt{6}+2}
Calculate the square root of 4 and get 2.
5+2\sqrt{6}+\frac{\left(\sqrt{6}-2\right)\left(\sqrt{6}-2\right)}{\left(\sqrt{6}+2\right)\left(\sqrt{6}-2\right)}
Rationalize the denominator of \frac{\sqrt{6}-2}{\sqrt{6}+2} by multiplying numerator and denominator by \sqrt{6}-2.
5+2\sqrt{6}+\frac{\left(\sqrt{6}-2\right)\left(\sqrt{6}-2\right)}{\left(\sqrt{6}\right)^{2}-2^{2}}
Consider \left(\sqrt{6}+2\right)\left(\sqrt{6}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
5+2\sqrt{6}+\frac{\left(\sqrt{6}-2\right)\left(\sqrt{6}-2\right)}{6-4}
Square \sqrt{6}. Square 2.
5+2\sqrt{6}+\frac{\left(\sqrt{6}-2\right)\left(\sqrt{6}-2\right)}{2}
Subtract 4 from 6 to get 2.
5+2\sqrt{6}+\frac{\left(\sqrt{6}-2\right)^{2}}{2}
Multiply \sqrt{6}-2 and \sqrt{6}-2 to get \left(\sqrt{6}-2\right)^{2}.
5+2\sqrt{6}+\frac{\left(\sqrt{6}\right)^{2}-4\sqrt{6}+4}{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{6}-2\right)^{2}.
5+2\sqrt{6}+\frac{6-4\sqrt{6}+4}{2}
The square of \sqrt{6} is 6.
5+2\sqrt{6}+\frac{10-4\sqrt{6}}{2}
Add 6 and 4 to get 10.
5+2\sqrt{6}+5-2\sqrt{6}
Divide each term of 10-4\sqrt{6} by 2 to get 5-2\sqrt{6}.
10+2\sqrt{6}-2\sqrt{6}
Add 5 and 5 to get 10.
10
Combine 2\sqrt{6} and -2\sqrt{6} to get 0.