Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{6}+\sqrt{3}+\sqrt{2}}{\sqrt{3}}
Combine \sqrt{6} and -\sqrt{6} to get 0.
\frac{\left(\sqrt{6}+\sqrt{3}+\sqrt{2}\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{6}+\sqrt{3}+\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(\sqrt{6}+\sqrt{3}+\sqrt{2}\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{\sqrt{6}\sqrt{3}+\left(\sqrt{3}\right)^{2}+\sqrt{2}\sqrt{3}}{3}
Use the distributive property to multiply \sqrt{6}+\sqrt{3}+\sqrt{2} by \sqrt{3}.
\frac{\sqrt{3}\sqrt{2}\sqrt{3}+\left(\sqrt{3}\right)^{2}+\sqrt{2}\sqrt{3}}{3}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{3\sqrt{2}+\left(\sqrt{3}\right)^{2}+\sqrt{2}\sqrt{3}}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{3\sqrt{2}+3+\sqrt{2}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{3\sqrt{2}+3+\sqrt{6}}{3}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.