Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{5}-2\sqrt{3}}{3\sqrt{5}+\sqrt{2}}\times 1
Divide 3\sqrt{5}-\sqrt{2} by 3\sqrt{5}-\sqrt{2} to get 1.
\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}-\sqrt{2}\right)}{\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-\sqrt{2}\right)}\times 1
Rationalize the denominator of \frac{\sqrt{5}-2\sqrt{3}}{3\sqrt{5}+\sqrt{2}} by multiplying numerator and denominator by 3\sqrt{5}-\sqrt{2}.
\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}-\sqrt{2}\right)}{\left(3\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}}\times 1
Consider \left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}-\sqrt{2}\right)}{3^{2}\left(\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}}\times 1
Expand \left(3\sqrt{5}\right)^{2}.
\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}-\sqrt{2}\right)}{9\left(\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}}\times 1
Calculate 3 to the power of 2 and get 9.
\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}-\sqrt{2}\right)}{9\times 5-\left(\sqrt{2}\right)^{2}}\times 1
The square of \sqrt{5} is 5.
\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}-\sqrt{2}\right)}{45-\left(\sqrt{2}\right)^{2}}\times 1
Multiply 9 and 5 to get 45.
\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}-\sqrt{2}\right)}{45-2}\times 1
The square of \sqrt{2} is 2.
\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}-\sqrt{2}\right)}{43}\times 1
Subtract 2 from 45 to get 43.
\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}-\sqrt{2}\right)}{43}
Express \frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}-\sqrt{2}\right)}{43}\times 1 as a single fraction.
\frac{3\left(\sqrt{5}\right)^{2}-\sqrt{5}\sqrt{2}-6\sqrt{3}\sqrt{5}+2\sqrt{3}\sqrt{2}}{43}
Apply the distributive property by multiplying each term of \sqrt{5}-2\sqrt{3} by each term of 3\sqrt{5}-\sqrt{2}.
\frac{3\times 5-\sqrt{5}\sqrt{2}-6\sqrt{3}\sqrt{5}+2\sqrt{3}\sqrt{2}}{43}
The square of \sqrt{5} is 5.
\frac{15-\sqrt{5}\sqrt{2}-6\sqrt{3}\sqrt{5}+2\sqrt{3}\sqrt{2}}{43}
Multiply 3 and 5 to get 15.
\frac{15-\sqrt{10}-6\sqrt{3}\sqrt{5}+2\sqrt{3}\sqrt{2}}{43}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{15-\sqrt{10}-6\sqrt{15}+2\sqrt{3}\sqrt{2}}{43}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{15-\sqrt{10}-6\sqrt{15}+2\sqrt{6}}{43}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.