Evaluate
\frac{2\sqrt{6}+15-\sqrt{10}-6\sqrt{15}}{43}\approx -0.151190657
Share
Copied to clipboard
\frac{\sqrt{5}-2\sqrt{3}}{3\sqrt{5}+\sqrt{2}}\times 1
Divide 3\sqrt{5}-\sqrt{2} by 3\sqrt{5}-\sqrt{2} to get 1.
\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}-\sqrt{2}\right)}{\left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-\sqrt{2}\right)}\times 1
Rationalize the denominator of \frac{\sqrt{5}-2\sqrt{3}}{3\sqrt{5}+\sqrt{2}} by multiplying numerator and denominator by 3\sqrt{5}-\sqrt{2}.
\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}-\sqrt{2}\right)}{\left(3\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}}\times 1
Consider \left(3\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{5}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}-\sqrt{2}\right)}{3^{2}\left(\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}}\times 1
Expand \left(3\sqrt{5}\right)^{2}.
\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}-\sqrt{2}\right)}{9\left(\sqrt{5}\right)^{2}-\left(\sqrt{2}\right)^{2}}\times 1
Calculate 3 to the power of 2 and get 9.
\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}-\sqrt{2}\right)}{9\times 5-\left(\sqrt{2}\right)^{2}}\times 1
The square of \sqrt{5} is 5.
\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}-\sqrt{2}\right)}{45-\left(\sqrt{2}\right)^{2}}\times 1
Multiply 9 and 5 to get 45.
\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}-\sqrt{2}\right)}{45-2}\times 1
The square of \sqrt{2} is 2.
\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}-\sqrt{2}\right)}{43}\times 1
Subtract 2 from 45 to get 43.
\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}-\sqrt{2}\right)}{43}
Express \frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(3\sqrt{5}-\sqrt{2}\right)}{43}\times 1 as a single fraction.
\frac{3\left(\sqrt{5}\right)^{2}-\sqrt{5}\sqrt{2}-6\sqrt{3}\sqrt{5}+2\sqrt{3}\sqrt{2}}{43}
Apply the distributive property by multiplying each term of \sqrt{5}-2\sqrt{3} by each term of 3\sqrt{5}-\sqrt{2}.
\frac{3\times 5-\sqrt{5}\sqrt{2}-6\sqrt{3}\sqrt{5}+2\sqrt{3}\sqrt{2}}{43}
The square of \sqrt{5} is 5.
\frac{15-\sqrt{5}\sqrt{2}-6\sqrt{3}\sqrt{5}+2\sqrt{3}\sqrt{2}}{43}
Multiply 3 and 5 to get 15.
\frac{15-\sqrt{10}-6\sqrt{3}\sqrt{5}+2\sqrt{3}\sqrt{2}}{43}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{15-\sqrt{10}-6\sqrt{15}+2\sqrt{3}\sqrt{2}}{43}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{15-\sqrt{10}-6\sqrt{15}+2\sqrt{6}}{43}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}