Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}-\sqrt{7}\right)}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{5}-\sqrt{7}\right)}
Rationalize the denominator of \frac{\sqrt{5}-\sqrt{7}}{\sqrt{5}+\sqrt{7}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{7}.
\frac{\left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}-\sqrt{7}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{7}\right)^{2}}
Consider \left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{5}-\sqrt{7}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}-\sqrt{7}\right)}{5-7}
Square \sqrt{5}. Square \sqrt{7}.
\frac{\left(\sqrt{5}-\sqrt{7}\right)\left(\sqrt{5}-\sqrt{7}\right)}{-2}
Subtract 7 from 5 to get -2.
\frac{\left(\sqrt{5}-\sqrt{7}\right)^{2}}{-2}
Multiply \sqrt{5}-\sqrt{7} and \sqrt{5}-\sqrt{7} to get \left(\sqrt{5}-\sqrt{7}\right)^{2}.
\frac{\left(\sqrt{5}\right)^{2}-2\sqrt{5}\sqrt{7}+\left(\sqrt{7}\right)^{2}}{-2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-\sqrt{7}\right)^{2}.
\frac{5-2\sqrt{5}\sqrt{7}+\left(\sqrt{7}\right)^{2}}{-2}
The square of \sqrt{5} is 5.
\frac{5-2\sqrt{35}+\left(\sqrt{7}\right)^{2}}{-2}
To multiply \sqrt{5} and \sqrt{7}, multiply the numbers under the square root.
\frac{5-2\sqrt{35}+7}{-2}
The square of \sqrt{7} is 7.
\frac{12-2\sqrt{35}}{-2}
Add 5 and 7 to get 12.
-6+\sqrt{35}
Divide each term of 12-2\sqrt{35} by -2 to get -6+\sqrt{35}.