Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{5}\left(4+\sqrt{3}\right)}{\left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{5}}{4-\sqrt{3}} by multiplying numerator and denominator by 4+\sqrt{3}.
\frac{\sqrt{5}\left(4+\sqrt{3}\right)}{4^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(4-\sqrt{3}\right)\left(4+\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{5}\left(4+\sqrt{3}\right)}{16-3}
Square 4. Square \sqrt{3}.
\frac{\sqrt{5}\left(4+\sqrt{3}\right)}{13}
Subtract 3 from 16 to get 13.
\frac{4\sqrt{5}+\sqrt{5}\sqrt{3}}{13}
Use the distributive property to multiply \sqrt{5} by 4+\sqrt{3}.
\frac{4\sqrt{5}+\sqrt{15}}{13}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.