Evaluate
\frac{5\sqrt{2}}{2}+1\approx 4.535533906
Share
Copied to clipboard
\frac{4\sqrt{3}-\sqrt{27}}{\sqrt{3}}+2\sqrt{6}\sqrt{\frac{1}{3}}+\sin(45)
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{4\sqrt{3}-3\sqrt{3}}{\sqrt{3}}+2\sqrt{6}\sqrt{\frac{1}{3}}+\sin(45)
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{\sqrt{3}}{\sqrt{3}}+2\sqrt{6}\sqrt{\frac{1}{3}}+\sin(45)
Combine 4\sqrt{3} and -3\sqrt{3} to get \sqrt{3}.
\sqrt{1}+2\sqrt{6}\sqrt{\frac{1}{3}}+\sin(45)
Rewrite the division of square roots \frac{\sqrt{3}}{\sqrt{3}} as the square root of the division \sqrt{\frac{3}{3}} and perform the division.
1+2\sqrt{6}\sqrt{\frac{1}{3}}+\sin(45)
Calculate the square root of 1 and get 1.
1+2\sqrt{6}\times \frac{\sqrt{1}}{\sqrt{3}}+\sin(45)
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
1+2\sqrt{6}\times \frac{1}{\sqrt{3}}+\sin(45)
Calculate the square root of 1 and get 1.
1+2\sqrt{6}\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\sin(45)
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
1+2\sqrt{6}\times \frac{\sqrt{3}}{3}+\sin(45)
The square of \sqrt{3} is 3.
1+\frac{2\sqrt{3}}{3}\sqrt{6}+\sin(45)
Express 2\times \frac{\sqrt{3}}{3} as a single fraction.
1+\frac{2\sqrt{3}}{3}\sqrt{6}+\frac{\sqrt{2}}{2}
Get the value of \sin(45) from trigonometric values table.
\frac{2}{2}+\frac{2\sqrt{3}}{3}\sqrt{6}+\frac{\sqrt{2}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{2+\sqrt{2}}{2}+\frac{2\sqrt{3}}{3}\sqrt{6}
Since \frac{2}{2} and \frac{\sqrt{2}}{2} have the same denominator, add them by adding their numerators.
\frac{2+\sqrt{2}}{2}+\frac{2\sqrt{3}\sqrt{6}}{3}
Express \frac{2\sqrt{3}}{3}\sqrt{6} as a single fraction.
\frac{3\left(2+\sqrt{2}\right)}{6}+\frac{2\times 2\sqrt{3}\sqrt{6}}{6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{2+\sqrt{2}}{2} times \frac{3}{3}. Multiply \frac{2\sqrt{3}\sqrt{6}}{3} times \frac{2}{2}.
\frac{3\left(2+\sqrt{2}\right)+2\times 2\sqrt{3}\sqrt{6}}{6}
Since \frac{3\left(2+\sqrt{2}\right)}{6} and \frac{2\times 2\sqrt{3}\sqrt{6}}{6} have the same denominator, add them by adding their numerators.
\frac{6+3\sqrt{2}+12\sqrt{2}}{6}
Do the multiplications in 3\left(2+\sqrt{2}\right)+2\times 2\sqrt{3}\sqrt{6}.
\frac{6+15\sqrt{2}}{6}
Do the calculations in 6+3\sqrt{2}+12\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}