Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-3\right)}{\left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right)}
Rationalize the denominator of \frac{\sqrt{3}-3}{\sqrt{3}+3} by multiplying numerator and denominator by \sqrt{3}-3.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-3\right)}{\left(\sqrt{3}\right)^{2}-3^{2}}
Consider \left(\sqrt{3}+3\right)\left(\sqrt{3}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-3\right)}{3-9}
Square \sqrt{3}. Square 3.
\frac{\left(\sqrt{3}-3\right)\left(\sqrt{3}-3\right)}{-6}
Subtract 9 from 3 to get -6.
\frac{\left(\sqrt{3}-3\right)^{2}}{-6}
Multiply \sqrt{3}-3 and \sqrt{3}-3 to get \left(\sqrt{3}-3\right)^{2}.
\frac{\left(\sqrt{3}\right)^{2}-6\sqrt{3}+9}{-6}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-3\right)^{2}.
\frac{3-6\sqrt{3}+9}{-6}
The square of \sqrt{3} is 3.
\frac{12-6\sqrt{3}}{-6}
Add 3 and 9 to get 12.
-2+\sqrt{3}
Divide each term of 12-6\sqrt{3} by -6 to get -2+\sqrt{3}.