Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}-1\right)\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}\times \frac{7+24\sqrt{3}}{50}-\frac{24-7\sqrt{3}}{50}\times \frac{\sqrt{3}+1}{2\sqrt{2}}
Rationalize the denominator of \frac{\sqrt{3}-1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(\sqrt{3}-1\right)\sqrt{2}}{2\times 2}\times \frac{7+24\sqrt{3}}{50}-\frac{24-7\sqrt{3}}{50}\times \frac{\sqrt{3}+1}{2\sqrt{2}}
The square of \sqrt{2} is 2.
\frac{\left(\sqrt{3}-1\right)\sqrt{2}}{4}\times \frac{7+24\sqrt{3}}{50}-\frac{24-7\sqrt{3}}{50}\times \frac{\sqrt{3}+1}{2\sqrt{2}}
Multiply 2 and 2 to get 4.
\frac{\left(\sqrt{3}-1\right)\sqrt{2}\left(7+24\sqrt{3}\right)}{4\times 50}-\frac{24-7\sqrt{3}}{50}\times \frac{\sqrt{3}+1}{2\sqrt{2}}
Multiply \frac{\left(\sqrt{3}-1\right)\sqrt{2}}{4} times \frac{7+24\sqrt{3}}{50} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\sqrt{3}-1\right)\sqrt{2}\left(7+24\sqrt{3}\right)}{4\times 50}-\frac{24-7\sqrt{3}}{50}\times \frac{\left(\sqrt{3}+1\right)\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{3}+1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(\sqrt{3}-1\right)\sqrt{2}\left(7+24\sqrt{3}\right)}{4\times 50}-\frac{24-7\sqrt{3}}{50}\times \frac{\left(\sqrt{3}+1\right)\sqrt{2}}{2\times 2}
The square of \sqrt{2} is 2.
\frac{\left(\sqrt{3}-1\right)\sqrt{2}\left(7+24\sqrt{3}\right)}{4\times 50}-\frac{24-7\sqrt{3}}{50}\times \frac{\left(\sqrt{3}+1\right)\sqrt{2}}{4}
Multiply 2 and 2 to get 4.
\frac{\left(\sqrt{3}-1\right)\sqrt{2}\left(7+24\sqrt{3}\right)}{4\times 50}-\frac{\left(24-7\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2}}{50\times 4}
Multiply \frac{24-7\sqrt{3}}{50} times \frac{\left(\sqrt{3}+1\right)\sqrt{2}}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(\sqrt{3}-1\right)\sqrt{2}\left(7+24\sqrt{3}\right)}{4\times 50}-\frac{\left(24-7\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2}}{200}
Multiply 50 and 4 to get 200.
\frac{\left(\sqrt{3}-1\right)\sqrt{2}\left(7+24\sqrt{3}\right)}{200}-\frac{\left(24-7\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2}}{200}
To add or subtract expressions, expand them to make their denominators the same. Expand 4\times 50.
\frac{\left(\sqrt{3}-1\right)\sqrt{2}\left(7+24\sqrt{3}\right)-\left(24-7\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2}}{200}
Since \frac{\left(\sqrt{3}-1\right)\sqrt{2}\left(7+24\sqrt{3}\right)}{200} and \frac{\left(24-7\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2}}{200} have the same denominator, subtract them by subtracting their numerators.
\frac{7\sqrt{6}+72\sqrt{2}-7\sqrt{2}-24\sqrt{6}-24\sqrt{6}-24\sqrt{2}+21\sqrt{2}+7\sqrt{6}}{200}
Do the multiplications in \left(\sqrt{3}-1\right)\sqrt{2}\left(7+24\sqrt{3}\right)-\left(24-7\sqrt{3}\right)\left(\sqrt{3}+1\right)\sqrt{2}.
\frac{-34\sqrt{6}+62\sqrt{2}}{200}
Do the calculations in 7\sqrt{6}+72\sqrt{2}-7\sqrt{2}-24\sqrt{6}-24\sqrt{6}-24\sqrt{2}+21\sqrt{2}+7\sqrt{6}.