Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{3}-\sqrt{5}}{\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{3}.
\frac{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)}{5-3}
Square \sqrt{5}. Square \sqrt{3}.
\frac{\left(\sqrt{3}-\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}
Subtract 3 from 5 to get 2.
\frac{\sqrt{3}\sqrt{5}-\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}+\sqrt{3}\sqrt{5}}{2}
Apply the distributive property by multiplying each term of \sqrt{3}-\sqrt{5} by each term of \sqrt{5}-\sqrt{3}.
\frac{\sqrt{15}-\left(\sqrt{3}\right)^{2}-\left(\sqrt{5}\right)^{2}+\sqrt{3}\sqrt{5}}{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{\sqrt{15}-3-\left(\sqrt{5}\right)^{2}+\sqrt{3}\sqrt{5}}{2}
The square of \sqrt{3} is 3.
\frac{\sqrt{15}-3-5+\sqrt{3}\sqrt{5}}{2}
The square of \sqrt{5} is 5.
\frac{\sqrt{15}-8+\sqrt{3}\sqrt{5}}{2}
Subtract 5 from -3 to get -8.
\frac{\sqrt{15}-8+\sqrt{15}}{2}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{2\sqrt{15}-8}{2}
Combine \sqrt{15} and \sqrt{15} to get 2\sqrt{15}.
\sqrt{15}-4
Divide each term of 2\sqrt{15}-8 by 2 to get \sqrt{15}-4.