Evaluate
-\sqrt{3}-1\approx -2.732050808
Factor
-\sqrt{3}-1
Share
Copied to clipboard
\frac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}-\sqrt{8}}-\frac{\sqrt{27}}{3}-\frac{3}{2}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}-2\sqrt{2}}-\frac{\sqrt{27}}{3}-\frac{3}{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{\left(2\sqrt{3}-2\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}-\frac{\sqrt{27}}{3}-\frac{3}{2}
Rationalize the denominator of \frac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}-2\sqrt{2}} by multiplying numerator and denominator by 2\sqrt{3}+2\sqrt{2}.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{\left(2\sqrt{3}\right)^{2}-\left(-2\sqrt{2}\right)^{2}}-\frac{\sqrt{27}}{3}-\frac{3}{2}
Consider \left(2\sqrt{3}-2\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{2^{2}\left(\sqrt{3}\right)^{2}-\left(-2\sqrt{2}\right)^{2}}-\frac{\sqrt{27}}{3}-\frac{3}{2}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{4\left(\sqrt{3}\right)^{2}-\left(-2\sqrt{2}\right)^{2}}-\frac{\sqrt{27}}{3}-\frac{3}{2}
Calculate 2 to the power of 2 and get 4.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{4\times 3-\left(-2\sqrt{2}\right)^{2}}-\frac{\sqrt{27}}{3}-\frac{3}{2}
The square of \sqrt{3} is 3.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{12-\left(-2\sqrt{2}\right)^{2}}-\frac{\sqrt{27}}{3}-\frac{3}{2}
Multiply 4 and 3 to get 12.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{12-\left(-2\right)^{2}\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{27}}{3}-\frac{3}{2}
Expand \left(-2\sqrt{2}\right)^{2}.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{12-4\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{27}}{3}-\frac{3}{2}
Calculate -2 to the power of 2 and get 4.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{12-4\times 2}-\frac{\sqrt{27}}{3}-\frac{3}{2}
The square of \sqrt{2} is 2.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{12-8}-\frac{\sqrt{27}}{3}-\frac{3}{2}
Multiply 4 and 2 to get 8.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{4}-\frac{\sqrt{27}}{3}-\frac{3}{2}
Subtract 8 from 12 to get 4.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{4}-\frac{3\sqrt{3}}{3}-\frac{3}{2}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{4}-\sqrt{3}-\frac{3}{2}
Cancel out 3 and 3.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{4}-\sqrt{3}-\frac{3\times 2}{4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 2 is 4. Multiply \frac{3}{2} times \frac{2}{2}.
\frac{\left(\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)-3\times 2}{4}-\sqrt{3}
Since \frac{\left(\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)}{4} and \frac{3\times 2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{6+2\sqrt{6}-2\sqrt{6}-4-6}{4}-\sqrt{3}
Do the multiplications in \left(\sqrt{3}-\sqrt{2}\right)\left(2\sqrt{3}+2\sqrt{2}\right)-3\times 2.
\frac{-4}{4}-\sqrt{3}
Do the calculations in 6+2\sqrt{6}-2\sqrt{6}-4-6.
\frac{2\left(\sqrt{3}\right)^{2}+2\sqrt{3}\sqrt{2}-2\sqrt{3}\sqrt{2}-2\left(\sqrt{2}\right)^{2}}{4}-\sqrt{3}-\frac{3}{2}
Apply the distributive property by multiplying each term of \sqrt{3}-\sqrt{2} by each term of 2\sqrt{3}+2\sqrt{2}.
\frac{2\times 3+2\sqrt{3}\sqrt{2}-2\sqrt{3}\sqrt{2}-2\left(\sqrt{2}\right)^{2}}{4}-\sqrt{3}-\frac{3}{2}
The square of \sqrt{3} is 3.
\frac{6+2\sqrt{3}\sqrt{2}-2\sqrt{3}\sqrt{2}-2\left(\sqrt{2}\right)^{2}}{4}-\sqrt{3}-\frac{3}{2}
Multiply 2 and 3 to get 6.
\frac{6+2\sqrt{6}-2\sqrt{3}\sqrt{2}-2\left(\sqrt{2}\right)^{2}}{4}-\sqrt{3}-\frac{3}{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{6+2\sqrt{6}-2\sqrt{6}-2\left(\sqrt{2}\right)^{2}}{4}-\sqrt{3}-\frac{3}{2}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{6-2\left(\sqrt{2}\right)^{2}}{4}-\sqrt{3}-\frac{3}{2}
Combine 2\sqrt{6} and -2\sqrt{6} to get 0.
\frac{6-2\times 2}{4}-\sqrt{3}-\frac{3}{2}
The square of \sqrt{2} is 2.
\frac{6-4}{4}-\sqrt{3}-\frac{3}{2}
Multiply -2 and 2 to get -4.
\frac{2}{4}-\sqrt{3}-\frac{3}{2}
Subtract 4 from 6 to get 2.
\frac{1}{2}-\sqrt{3}-\frac{3}{2}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1-3}{2}-\sqrt{3}
Since \frac{1}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{-2}{2}-\sqrt{3}
Subtract 3 from 1 to get -2.
-1-\sqrt{3}
Divide -2 by 2 to get -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}