Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}+\frac{\sqrt{3}-1}{\sqrt{3}+1}
Rationalize the denominator of \frac{\sqrt{3}+1}{\sqrt{3}-1} by multiplying numerator and denominator by \sqrt{3}+1.
\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}+\frac{\sqrt{3}-1}{\sqrt{3}+1}
Consider \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{3-1}+\frac{\sqrt{3}-1}{\sqrt{3}+1}
Square \sqrt{3}. Square 1.
\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1\right)}{2}+\frac{\sqrt{3}-1}{\sqrt{3}+1}
Subtract 1 from 3 to get 2.
\frac{\left(\sqrt{3}+1\right)^{2}}{2}+\frac{\sqrt{3}-1}{\sqrt{3}+1}
Multiply \sqrt{3}+1 and \sqrt{3}+1 to get \left(\sqrt{3}+1\right)^{2}.
\frac{\left(\sqrt{3}\right)^{2}+2\sqrt{3}+1}{2}+\frac{\sqrt{3}-1}{\sqrt{3}+1}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3}+1\right)^{2}.
\frac{3+2\sqrt{3}+1}{2}+\frac{\sqrt{3}-1}{\sqrt{3}+1}
The square of \sqrt{3} is 3.
\frac{4+2\sqrt{3}}{2}+\frac{\sqrt{3}-1}{\sqrt{3}+1}
Add 3 and 1 to get 4.
2+\sqrt{3}+\frac{\sqrt{3}-1}{\sqrt{3}+1}
Divide each term of 4+2\sqrt{3} by 2 to get 2+\sqrt{3}.
2+\sqrt{3}+\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}
Rationalize the denominator of \frac{\sqrt{3}-1}{\sqrt{3}+1} by multiplying numerator and denominator by \sqrt{3}-1.
2+\sqrt{3}+\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Consider \left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
2+\sqrt{3}+\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{3-1}
Square \sqrt{3}. Square 1.
2+\sqrt{3}+\frac{\left(\sqrt{3}-1\right)\left(\sqrt{3}-1\right)}{2}
Subtract 1 from 3 to get 2.
2+\sqrt{3}+\frac{\left(\sqrt{3}-1\right)^{2}}{2}
Multiply \sqrt{3}-1 and \sqrt{3}-1 to get \left(\sqrt{3}-1\right)^{2}.
2+\sqrt{3}+\frac{\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1}{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{3}-1\right)^{2}.
2+\sqrt{3}+\frac{3-2\sqrt{3}+1}{2}
The square of \sqrt{3} is 3.
2+\sqrt{3}+\frac{4-2\sqrt{3}}{2}
Add 3 and 1 to get 4.
2+\sqrt{3}+2-\sqrt{3}
Divide each term of 4-2\sqrt{3} by 2 to get 2-\sqrt{3}.
4+\sqrt{3}-\sqrt{3}
Add 2 and 2 to get 4.
4
Combine \sqrt{3} and -\sqrt{3} to get 0.