Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{15}+1\right)}{\left(\sqrt{15}-1\right)\left(\sqrt{15}+1\right)}
Rationalize the denominator of \frac{\sqrt{3}+\sqrt{5}}{\sqrt{15}-1} by multiplying numerator and denominator by \sqrt{15}+1.
\frac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{15}+1\right)}{\left(\sqrt{15}\right)^{2}-1^{2}}
Consider \left(\sqrt{15}-1\right)\left(\sqrt{15}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{15}+1\right)}{15-1}
Square \sqrt{15}. Square 1.
\frac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{15}+1\right)}{14}
Subtract 1 from 15 to get 14.
\frac{\sqrt{3}\sqrt{15}+\sqrt{3}+\sqrt{5}\sqrt{15}+\sqrt{5}}{14}
Apply the distributive property by multiplying each term of \sqrt{3}+\sqrt{5} by each term of \sqrt{15}+1.
\frac{\sqrt{3}\sqrt{3}\sqrt{5}+\sqrt{3}+\sqrt{5}\sqrt{15}+\sqrt{5}}{14}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{3\sqrt{5}+\sqrt{3}+\sqrt{5}\sqrt{15}+\sqrt{5}}{14}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{3\sqrt{5}+\sqrt{3}+\sqrt{5}\sqrt{5}\sqrt{3}+\sqrt{5}}{14}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{3\sqrt{5}+\sqrt{3}+5\sqrt{3}+\sqrt{5}}{14}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{3\sqrt{5}+6\sqrt{3}+\sqrt{5}}{14}
Combine \sqrt{3} and 5\sqrt{3} to get 6\sqrt{3}.
\frac{4\sqrt{5}+6\sqrt{3}}{14}
Combine 3\sqrt{5} and \sqrt{5} to get 4\sqrt{5}.