Evaluate
\frac{2\sqrt{5}+3\sqrt{3}}{7}\approx 1.381184054
Share
Copied to clipboard
\frac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{15}+1\right)}{\left(\sqrt{15}-1\right)\left(\sqrt{15}+1\right)}
Rationalize the denominator of \frac{\sqrt{3}+\sqrt{5}}{\sqrt{15}-1} by multiplying numerator and denominator by \sqrt{15}+1.
\frac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{15}+1\right)}{\left(\sqrt{15}\right)^{2}-1^{2}}
Consider \left(\sqrt{15}-1\right)\left(\sqrt{15}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{15}+1\right)}{15-1}
Square \sqrt{15}. Square 1.
\frac{\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{15}+1\right)}{14}
Subtract 1 from 15 to get 14.
\frac{\sqrt{3}\sqrt{15}+\sqrt{3}+\sqrt{5}\sqrt{15}+\sqrt{5}}{14}
Apply the distributive property by multiplying each term of \sqrt{3}+\sqrt{5} by each term of \sqrt{15}+1.
\frac{\sqrt{3}\sqrt{3}\sqrt{5}+\sqrt{3}+\sqrt{5}\sqrt{15}+\sqrt{5}}{14}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{3\sqrt{5}+\sqrt{3}+\sqrt{5}\sqrt{15}+\sqrt{5}}{14}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{3\sqrt{5}+\sqrt{3}+\sqrt{5}\sqrt{5}\sqrt{3}+\sqrt{5}}{14}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{3\sqrt{5}+\sqrt{3}+5\sqrt{3}+\sqrt{5}}{14}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{3\sqrt{5}+6\sqrt{3}+\sqrt{5}}{14}
Combine \sqrt{3} and 5\sqrt{3} to get 6\sqrt{3}.
\frac{4\sqrt{5}+6\sqrt{3}}{14}
Combine 3\sqrt{5} and \sqrt{5} to get 4\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}