Evaluate
\frac{\sqrt{3}\left(x-4\right)\left(x+2\right)}{3}
Differentiate w.r.t. x
\frac{2\sqrt{3}\left(x-1\right)}{3}
Graph
Share
Copied to clipboard
\frac{\sqrt{3}\left(x-4\right)}{3}\left(x+2\right)
Express \frac{\sqrt{3}}{3}\left(x-4\right) as a single fraction.
\frac{\sqrt{3}\left(x-4\right)\left(x+2\right)}{3}
Express \frac{\sqrt{3}\left(x-4\right)}{3}\left(x+2\right) as a single fraction.
\frac{\left(\sqrt{3}x-4\sqrt{3}\right)\left(x+2\right)}{3}
Use the distributive property to multiply \sqrt{3} by x-4.
\frac{\sqrt{3}x^{2}+2\sqrt{3}x-4\sqrt{3}x-8\sqrt{3}}{3}
Apply the distributive property by multiplying each term of \sqrt{3}x-4\sqrt{3} by each term of x+2.
\frac{\sqrt{3}x^{2}-2\sqrt{3}x-8\sqrt{3}}{3}
Combine 2\sqrt{3}x and -4\sqrt{3}x to get -2\sqrt{3}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}