Evaluate
\frac{\sqrt{3}\left(3x-8\right)\left(3x+2\right)}{27}
Factor
\frac{\sqrt{3}\left(3x-8\right)\left(3x+2\right)}{27}
Graph
Share
Copied to clipboard
\left(\frac{\sqrt{3}}{3}x+\frac{\sqrt{3}}{3}\left(-\frac{8}{3}\right)\right)\left(x+\frac{2}{3}\right)
Use the distributive property to multiply \frac{\sqrt{3}}{3} by x-\frac{8}{3}.
\left(\frac{\sqrt{3}x}{3}+\frac{\sqrt{3}}{3}\left(-\frac{8}{3}\right)\right)\left(x+\frac{2}{3}\right)
Express \frac{\sqrt{3}}{3}x as a single fraction.
\left(\frac{\sqrt{3}x}{3}+\frac{-\sqrt{3}\times 8}{3\times 3}\right)\left(x+\frac{2}{3}\right)
Multiply \frac{\sqrt{3}}{3} times -\frac{8}{3} by multiplying numerator times numerator and denominator times denominator.
\left(\frac{3\sqrt{3}x}{3\times 3}+\frac{-\sqrt{3}\times 8}{3\times 3}\right)\left(x+\frac{2}{3}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 3\times 3 is 3\times 3. Multiply \frac{\sqrt{3}x}{3} times \frac{3}{3}.
\frac{3\sqrt{3}x-\sqrt{3}\times 8}{3\times 3}\left(x+\frac{2}{3}\right)
Since \frac{3\sqrt{3}x}{3\times 3} and \frac{-\sqrt{3}\times 8}{3\times 3} have the same denominator, add them by adding their numerators.
\frac{3\sqrt{3}x-8\sqrt{3}}{3\times 3}\left(x+\frac{2}{3}\right)
Do the multiplications in 3\sqrt{3}x-\sqrt{3}\times 8.
\frac{\sqrt{3}\left(3x-8\right)}{3\times 3}\left(x+\frac{2}{3}\right)
Factor the expressions that are not already factored in \frac{3\sqrt{3}x-8\sqrt{3}}{3\times 3}.
\frac{3x-8}{3\sqrt{3}}\left(x+\frac{2}{3}\right)
Cancel out \sqrt{3} in both numerator and denominator.
\frac{3x-8}{3\sqrt{3}}x+\frac{3x-8}{3\sqrt{3}}\times \frac{2}{3}
Use the distributive property to multiply \frac{3x-8}{3\sqrt{3}} by x+\frac{2}{3}.
\frac{\left(3x-8\right)\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}x+\frac{3x-8}{3\sqrt{3}}\times \frac{2}{3}
Rationalize the denominator of \frac{3x-8}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(3x-8\right)\sqrt{3}}{3\times 3}x+\frac{3x-8}{3\sqrt{3}}\times \frac{2}{3}
The square of \sqrt{3} is 3.
\frac{\left(3x-8\right)\sqrt{3}}{9}x+\frac{3x-8}{3\sqrt{3}}\times \frac{2}{3}
Multiply 3 and 3 to get 9.
\frac{\left(3x-8\right)\sqrt{3}x}{9}+\frac{3x-8}{3\sqrt{3}}\times \frac{2}{3}
Express \frac{\left(3x-8\right)\sqrt{3}}{9}x as a single fraction.
\frac{\left(3x-8\right)\sqrt{3}x}{9}+\frac{\left(3x-8\right)\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}\times \frac{2}{3}
Rationalize the denominator of \frac{3x-8}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(3x-8\right)\sqrt{3}x}{9}+\frac{\left(3x-8\right)\sqrt{3}}{3\times 3}\times \frac{2}{3}
The square of \sqrt{3} is 3.
\frac{\left(3x-8\right)\sqrt{3}x}{9}+\frac{\left(3x-8\right)\sqrt{3}}{9}\times \frac{2}{3}
Multiply 3 and 3 to get 9.
\frac{\left(3x-8\right)\sqrt{3}x}{9}+\frac{\left(3x-8\right)\sqrt{3}\times 2}{9\times 3}
Multiply \frac{\left(3x-8\right)\sqrt{3}}{9} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3\left(3x-8\right)\sqrt{3}x}{3\times 9}+\frac{\left(3x-8\right)\sqrt{3}\times 2}{3\times 9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 9 and 9\times 3 is 3\times 9. Multiply \frac{\left(3x-8\right)\sqrt{3}x}{9} times \frac{3}{3}.
\frac{3\left(3x-8\right)\sqrt{3}x+\left(3x-8\right)\sqrt{3}\times 2}{3\times 9}
Since \frac{3\left(3x-8\right)\sqrt{3}x}{3\times 9} and \frac{\left(3x-8\right)\sqrt{3}\times 2}{3\times 9} have the same denominator, add them by adding their numerators.
\frac{9x^{2}\sqrt{3}-24\sqrt{3}x+6x\sqrt{3}-16\sqrt{3}}{3\times 9}
Do the multiplications in 3\left(3x-8\right)\sqrt{3}x+\left(3x-8\right)\sqrt{3}\times 2.
\frac{-16\sqrt{3}+9x^{2}\sqrt{3}-18\sqrt{3}x}{3\times 9}
Combine like terms in 9x^{2}\sqrt{3}-24\sqrt{3}x+6x\sqrt{3}-16\sqrt{3}.
\frac{\sqrt{3}\left(3x-8\right)\left(3x+2\right)}{3\times 9}
Factor the expressions that are not already factored in \frac{-16\sqrt{3}+9x^{2}\sqrt{3}-18\sqrt{3}x}{3\times 9}.
\frac{\left(3x-8\right)\left(3x+2\right)}{9\sqrt{3}}
Cancel out \sqrt{3} in both numerator and denominator.
\frac{\left(3x-8\right)\left(3x+2\right)\sqrt{3}}{9\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{\left(3x-8\right)\left(3x+2\right)}{9\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(3x-8\right)\left(3x+2\right)\sqrt{3}}{9\times 3}
The square of \sqrt{3} is 3.
\frac{\left(3x-8\right)\left(3x+2\right)\sqrt{3}}{27}
Multiply 9 and 3 to get 27.
\frac{\left(9x^{2}+6x-24x-16\right)\sqrt{3}}{27}
Apply the distributive property by multiplying each term of 3x-8 by each term of 3x+2.
\frac{\left(9x^{2}-18x-16\right)\sqrt{3}}{27}
Combine 6x and -24x to get -18x.
\frac{9x^{2}\sqrt{3}-18x\sqrt{3}-16\sqrt{3}}{27}
Use the distributive property to multiply 9x^{2}-18x-16 by \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}