Solve for x
x=\frac{\sqrt{3}\left(y+3\right)}{3}
y\neq -3
Solve for y
y=\sqrt{3}x-3
x\neq 0
Graph
Share
Copied to clipboard
\left(y+3\right)\sqrt{3}=3x
Multiply both sides of the equation by 3\left(y+3\right), the least common multiple of 3,3+y.
y\sqrt{3}+3\sqrt{3}=3x
Use the distributive property to multiply y+3 by \sqrt{3}.
3x=y\sqrt{3}+3\sqrt{3}
Swap sides so that all variable terms are on the left hand side.
3x=\sqrt{3}y+3\sqrt{3}
The equation is in standard form.
\frac{3x}{3}=\frac{\sqrt{3}\left(y+3\right)}{3}
Divide both sides by 3.
x=\frac{\sqrt{3}\left(y+3\right)}{3}
Dividing by 3 undoes the multiplication by 3.
\left(y+3\right)\sqrt{3}=3x
Variable y cannot be equal to -3 since division by zero is not defined. Multiply both sides of the equation by 3\left(y+3\right), the least common multiple of 3,3+y.
y\sqrt{3}+3\sqrt{3}=3x
Use the distributive property to multiply y+3 by \sqrt{3}.
y\sqrt{3}=3x-3\sqrt{3}
Subtract 3\sqrt{3} from both sides.
\sqrt{3}y=3x-3\sqrt{3}
The equation is in standard form.
\frac{\sqrt{3}y}{\sqrt{3}}=\frac{3x-3\sqrt{3}}{\sqrt{3}}
Divide both sides by \sqrt{3}.
y=\frac{3x-3\sqrt{3}}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
y=\sqrt{3}x-3
Divide 3x-3\sqrt{3} by \sqrt{3}.
y=\sqrt{3}x-3\text{, }y\neq -3
Variable y cannot be equal to -3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}