Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{5}+2} by multiplying numerator and denominator by \sqrt{5}-2.
\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{\left(\sqrt{5}\right)^{2}-2^{2}}
Consider \left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{5-4}
Square \sqrt{5}. Square 2.
\frac{\sqrt{3}\left(\sqrt{5}-2\right)}{1}
Subtract 4 from 5 to get 1.
\sqrt{3}\left(\sqrt{5}-2\right)
Anything divided by one gives itself.
\sqrt{3}\sqrt{5}-2\sqrt{3}
Use the distributive property to multiply \sqrt{3} by \sqrt{5}-2.
\sqrt{15}-2\sqrt{3}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.