Evaluate
5
Factor
5
Share
Copied to clipboard
\frac{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}-\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{3}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{2}.
\frac{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}
Consider \left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{3-2}-\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}
Square \sqrt{3}. Square \sqrt{2}.
\frac{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{1}-\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}
Subtract 2 from 3 to get 1.
\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)-\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}
Anything divided by one gives itself.
\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)-\frac{\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}-\sqrt{2}.
\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)-\frac{\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)-\frac{\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)}{3-2}
Square \sqrt{3}. Square \sqrt{2}.
\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)-\frac{\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)}{1}
Subtract 2 from 3 to get 1.
\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)-\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)
Anything divided by one gives itself.
\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}-\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)
Use the distributive property to multiply \sqrt{3} by \sqrt{3}+\sqrt{2}.
3+\sqrt{3}\sqrt{2}-\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)
The square of \sqrt{3} is 3.
3+\sqrt{6}-\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
3+\sqrt{6}-\left(\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}\right)
Use the distributive property to multiply \sqrt{2} by \sqrt{3}-\sqrt{2}.
3+\sqrt{6}-\left(\sqrt{6}-\left(\sqrt{2}\right)^{2}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
3+\sqrt{6}-\left(\sqrt{6}-2\right)
The square of \sqrt{2} is 2.
3+\sqrt{6}-\sqrt{6}-\left(-2\right)
To find the opposite of \sqrt{6}-2, find the opposite of each term.
3+\sqrt{6}-\sqrt{6}+2
The opposite of -2 is 2.
3+2
Combine \sqrt{6} and -\sqrt{6} to get 0.
5
Add 3 and 2 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}