Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}-\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{3}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}+\sqrt{2}.
\frac{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}
Consider \left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{3-2}-\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}
Square \sqrt{3}. Square \sqrt{2}.
\frac{\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)}{1}-\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}
Subtract 2 from 3 to get 1.
\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)-\frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}
Anything divided by one gives itself.
\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)-\frac{\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}+\sqrt{2}} by multiplying numerator and denominator by \sqrt{3}-\sqrt{2}.
\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)-\frac{\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)-\frac{\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)}{3-2}
Square \sqrt{3}. Square \sqrt{2}.
\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)-\frac{\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)}{1}
Subtract 2 from 3 to get 1.
\sqrt{3}\left(\sqrt{3}+\sqrt{2}\right)-\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)
Anything divided by one gives itself.
\left(\sqrt{3}\right)^{2}+\sqrt{3}\sqrt{2}-\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)
Use the distributive property to multiply \sqrt{3} by \sqrt{3}+\sqrt{2}.
3+\sqrt{3}\sqrt{2}-\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)
The square of \sqrt{3} is 3.
3+\sqrt{6}-\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
3+\sqrt{6}-\left(\sqrt{2}\sqrt{3}-\left(\sqrt{2}\right)^{2}\right)
Use the distributive property to multiply \sqrt{2} by \sqrt{3}-\sqrt{2}.
3+\sqrt{6}-\left(\sqrt{6}-\left(\sqrt{2}\right)^{2}\right)
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
3+\sqrt{6}-\left(\sqrt{6}-2\right)
The square of \sqrt{2} is 2.
3+\sqrt{6}-\sqrt{6}-\left(-2\right)
To find the opposite of \sqrt{6}-2, find the opposite of each term.
3+\sqrt{6}-\sqrt{6}+2
The opposite of -2 is 2.
3+2
Combine \sqrt{6} and -\sqrt{6} to get 0.
5
Add 3 and 2 to get 5.