Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{3}\left(\sqrt{2}+4\right)}{\left(\sqrt{2}-4\right)\left(\sqrt{2}+4\right)}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}-4} by multiplying numerator and denominator by \sqrt{2}+4.
\frac{\sqrt{3}\left(\sqrt{2}+4\right)}{\left(\sqrt{2}\right)^{2}-4^{2}}
Consider \left(\sqrt{2}-4\right)\left(\sqrt{2}+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\left(\sqrt{2}+4\right)}{2-16}
Square \sqrt{2}. Square 4.
\frac{\sqrt{3}\left(\sqrt{2}+4\right)}{-14}
Subtract 16 from 2 to get -14.
\frac{\sqrt{3}\sqrt{2}+4\sqrt{3}}{-14}
Use the distributive property to multiply \sqrt{3} by \sqrt{2}+4.
\frac{\sqrt{6}+4\sqrt{3}}{-14}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{-\sqrt{6}-4\sqrt{3}}{14}
Multiply both numerator and denominator by -1.