Evaluate
2\sqrt{3}+1\approx 4.464101615
Share
Copied to clipboard
\frac{2\sqrt{6}+\sqrt{8}}{\sqrt{2}}-1
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
\frac{2\sqrt{6}+2\sqrt{2}}{\sqrt{2}}-1
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\left(2\sqrt{6}+2\sqrt{2}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-1
Rationalize the denominator of \frac{2\sqrt{6}+2\sqrt{2}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\left(2\sqrt{6}+2\sqrt{2}\right)\sqrt{2}}{2}-1
The square of \sqrt{2} is 2.
\frac{\left(2\sqrt{6}+2\sqrt{2}\right)\sqrt{2}}{2}-\frac{2}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2}{2}.
\frac{\left(2\sqrt{6}+2\sqrt{2}\right)\sqrt{2}-2}{2}
Since \frac{\left(2\sqrt{6}+2\sqrt{2}\right)\sqrt{2}}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{4\sqrt{3}+4-2}{2}
Do the multiplications in \left(2\sqrt{6}+2\sqrt{2}\right)\sqrt{2}-2.
\frac{4\sqrt{3}+2}{2}
Do the calculations in 4\sqrt{3}+4-2.
2\sqrt{3}+1
Divide each term of 4\sqrt{3}+2 by 2 to get 2\sqrt{3}+1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}