Evaluate
4\sqrt{2}-3\approx 2.656854249
Share
Copied to clipboard
\sqrt{8}-\sqrt{2}\sqrt{18}+\left(\sqrt{2}+1\right)^{2}
Rewrite the division of square roots \frac{\sqrt{24}}{\sqrt{3}} as the square root of the division \sqrt{\frac{24}{3}} and perform the division.
2\sqrt{2}-\sqrt{2}\sqrt{18}+\left(\sqrt{2}+1\right)^{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
2\sqrt{2}-\sqrt{2}\sqrt{2}\sqrt{9}+\left(\sqrt{2}+1\right)^{2}
Factor 18=2\times 9. Rewrite the square root of the product \sqrt{2\times 9} as the product of square roots \sqrt{2}\sqrt{9}.
2\sqrt{2}-2\sqrt{9}+\left(\sqrt{2}+1\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
2\sqrt{2}-2\times 3+\left(\sqrt{2}+1\right)^{2}
Calculate the square root of 9 and get 3.
2\sqrt{2}-6+\left(\sqrt{2}+1\right)^{2}
Multiply 2 and 3 to get 6.
2\sqrt{2}-6+\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{2}+1\right)^{2}.
2\sqrt{2}-6+2+2\sqrt{2}+1
The square of \sqrt{2} is 2.
2\sqrt{2}-6+3+2\sqrt{2}
Add 2 and 1 to get 3.
2\sqrt{2}-3+2\sqrt{2}
Add -6 and 3 to get -3.
4\sqrt{2}-3
Combine 2\sqrt{2} and 2\sqrt{2} to get 4\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}