Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{21}-\sqrt{7}\right)\sqrt{7}}{\left(\sqrt{7}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{21}-\sqrt{7}}{\sqrt{7}} by multiplying numerator and denominator by \sqrt{7}.
\frac{\left(\sqrt{21}-\sqrt{7}\right)\sqrt{7}}{7}
The square of \sqrt{7} is 7.
\frac{\sqrt{21}\sqrt{7}-\left(\sqrt{7}\right)^{2}}{7}
Use the distributive property to multiply \sqrt{21}-\sqrt{7} by \sqrt{7}.
\frac{\sqrt{7}\sqrt{3}\sqrt{7}-\left(\sqrt{7}\right)^{2}}{7}
Factor 21=7\times 3. Rewrite the square root of the product \sqrt{7\times 3} as the product of square roots \sqrt{7}\sqrt{3}.
\frac{7\sqrt{3}-\left(\sqrt{7}\right)^{2}}{7}
Multiply \sqrt{7} and \sqrt{7} to get 7.
\frac{7\sqrt{3}-7}{7}
The square of \sqrt{7} is 7.
\sqrt{3}-1
Divide each term of 7\sqrt{3}-7 by 7 to get \sqrt{3}-1.