Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\sqrt{21}-\sqrt{7}\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}
Rationalize the denominator of \frac{\sqrt{21}-\sqrt{7}}{\sqrt{3}-1} by multiplying numerator and denominator by \sqrt{3}+1.
\frac{\left(\sqrt{21}-\sqrt{7}\right)\left(\sqrt{3}+1\right)}{\left(\sqrt{3}\right)^{2}-1^{2}}
Consider \left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(\sqrt{21}-\sqrt{7}\right)\left(\sqrt{3}+1\right)}{3-1}
Square \sqrt{3}. Square 1.
\frac{\left(\sqrt{21}-\sqrt{7}\right)\left(\sqrt{3}+1\right)}{2}
Subtract 1 from 3 to get 2.
\frac{\sqrt{21}\sqrt{3}+\sqrt{21}-\sqrt{7}\sqrt{3}-\sqrt{7}}{2}
Apply the distributive property by multiplying each term of \sqrt{21}-\sqrt{7} by each term of \sqrt{3}+1.
\frac{\sqrt{3}\sqrt{7}\sqrt{3}+\sqrt{21}-\sqrt{7}\sqrt{3}-\sqrt{7}}{2}
Factor 21=3\times 7. Rewrite the square root of the product \sqrt{3\times 7} as the product of square roots \sqrt{3}\sqrt{7}.
\frac{3\sqrt{7}+\sqrt{21}-\sqrt{7}\sqrt{3}-\sqrt{7}}{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{3\sqrt{7}+\sqrt{21}-\sqrt{21}-\sqrt{7}}{2}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
\frac{3\sqrt{7}-\sqrt{7}}{2}
Combine \sqrt{21} and -\sqrt{21} to get 0.
\frac{2\sqrt{7}}{2}
Combine 3\sqrt{7} and -\sqrt{7} to get 2\sqrt{7}.
\sqrt{7}
Cancel out 2 and 2.